四川盆地雷口坡组盐水含水层CO2埋存能力评估
作者:
作者单位:

1.成都理工大学环境与土木工程学院;2.地质灾害防治与地质环境保护国家重点实验室

作者简介:

谢健,男,1978 年生,博士,主要从事碳埋存与储层多相流研究。E-mail:435943150@qq.com

基金项目:

国家留学基金委西部计划项目(20210815016);国家自然科学基金面上项目(41472275)


Evaluation of the storage capacity of the saline aquifers in the Leikoupo Formation, Sichuan Basin
Author:
Affiliation:

1.College of Environment and Civil Engineering,Chengdu University of Technology;2.State Key Laboratory of Geohazard Prevention and Geoenvironment Protection

Fund Project:

China Scholarship Council-‘Financial support for academic visitors from western China’ (20210815016), The General Program of National Natural Science Foundation of China (41472275).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [50]
  • | | | |
  • 文章评论
    摘要:

    盐水含水层CO2埋存能力是关乎我国实现碳中和目标的基础问题。四川盆地作为我国西南地区重要的油气产地,其深部盐水含水层的CO2埋存前景尚缺乏比较深入的定量研究。雷口坡组T2l是四川盆地的优质卤储层,其四段T2l4、三段T2l3、一段T2l1可作为CO2埋存的目标储层。本文基于多井并注超压解析解,采用MATLAB语言脚本CO2BLOCK,评估了雷口坡组深部盐水含水层的CO2埋存能力。结果表明:在连续注入CO2 30年的条件下,四川盆地雷口坡组储层的CO2埋存能力为0.83Gt,其中以雷口坡组四段的埋存能力最大,雷口坡组一段的埋存能力最小。雷口坡组四段、三段、一段的单井最大可持续注入速率分别为0.550Mt/a、0.051Mt/a和0.054Mt/a,对应的最大可持续超压分别为3.09MPa、5.67MPa和6.55MPa。T2l4、T2l3和T2l1三个储层的经济最优方案(井数,井距)分别为:(16,17)、(20,17)、(16,19),经济最优方案对应的埋存容量分别为0.50Gt、0.07Gt、0.04Gt。

    Abstract:

    The CO2 storage capacity of saline aquifers is a basic issue related to China's goal of carbon neutrality. The Sichuan Basin is an important oil and gas producing area in the southwest of the country, but there is still a lack of in-depth quantitative research on the CO2 storage prospects in its deep saline aquifers. The Leikoupo Formation T2l is a high-quality brine reservoir in the Sichuan Basin, and its fourth member T2l4, third member T2l3, and first member T2l1 can be used as target reservoirs for CO2 sequestration. In this study, based on the analytical solution to the overpressure induced by multiwell simultaneous injection, the MATLAB language script named CO2BLOCK is used to evaluate the CO2 storage capacity of the deep saline aquifers in the Leikoupo Formation. The results show that under the condition of continuous CO2 injection for 30 years, the CO2 storage capacity of the Leikoupo Formation reservoir in the Sichuan Basin is 0.83Gt, among which the storage capacity of the fourth member of Leikoupo Formation is the largest, the first member of Leikoupo Formation is the smallest. The maximum sustainable injection rate per well in the fourth, third and first members of the Leikoupo Formation are 0.550Mt/a, 0.051Mt/a and 0.054Mt/a, and the corresponding maximum sustainable overpressures are 3.09MPa, 5.67MPa and 6.55MPa. The economic optimal schemes (number of wells, well spacing) of the three reservoirs T2l4, T2l3 and T2l1 are respectively: (16,17), (20,17), (16,19), and the storage capacity corresponding to the economical optimal well arrangement scheme are 0.50Gt, 0.07Gt, 0.04Gt.

    参考文献
    [1] XIE J, ZHANG K, Li C, et al. Preliminary study on the CO2 injectivity and storage capacity of low-permeability saline aquifers at Chenjiacun site in the Ordos Basin[J]. International Journal of Greenhouse Gas Control, 2016, 52: 215-230.
    [2] XIE J, GOU X, GUO J. Assessing a potential site for offshore CO2 storage in the Weixinan Sag in the northwestern Beibu Gulf Basin, northern South China Sea[J]. Greenhouse Gases: Science and Technology, 2023, 13(1): 99-119.
    [3] 张炜, 李义连, 郑艳, 等. 二氧化碳地质封存中的储存容量评估: 问题和研究进展[J]. 地球科学进展, 2008, 23(10): 1061.
    [4] ZHANG W, Li Y, ZHENG Y, et al. CO2 storage capacity estimation in geological sequestration: Issus and research progress[J]. Advances in Earth Science, 2008, 23(10): 1061.
    [5] [4] GOODMAN A, HAKALA A, BROMHAL G, et al. US DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 952-965.
    [6] [5] 杨永智, 沈平平, 宋新民, 等. 盐水层温室气体地质埋存机理及潜力计算方法评价[J]. 吉林大学学报: 地球科学版, 2009 39(4): 744-748.
    [7] YANG Y Z, SHEN P, SONG X, et al. Greenhouse gas geo-sequestration mechanism and capacity evaluation in aquifer[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(4): 744-748.
    [8] [6] 李琦, 魏亚妮. 二氧化碳地质封存联合深部咸水开采技术进展[J]. 科技导报, 2013, 31(27): 65-70.
    [9] Li Q, WEI Y N. Progress in combination of CO2 geological storage and deep saline water recovery[J]. Science & Technology Review, 2013, 31(27): 65-70.
    [10] [7] Li X, OHSUMI T, KOIDE H, et al. Near-future perspective of CO2 aquifer storage in Japan: Site selection and capacity[J]. Energy, 2005, 30(11-12): 2360-2369.
    [11] [8] 李小春, 刘延锋, 白冰, 等. 中国深部咸水含水层 CO2储存优先区域选择[J]. 岩石力学与工程学报, 2006, 25(5): 963-968.
    [12] Li X C, LIU Y F, BAI B, et al. Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 963-968.
    [13] [9] 韩燚, 梁荣柱. 深部盐水层二氧化碳储量的计算新方法[J]. 西部探矿工程, 2011, 23(6): 112-115.
    [14] HAN Y, LIANG R Z. The New Means of Estimation of CO2 Storage Capacity in Deep Saline Aquifer[J]. West-China Exploration Engineering, 2011, 23(6): 112-115.
    [15] [10] QIAO X, Li G, Li M, et al. CO2 storage capacity assessment of deep saline aquifers in the Subei Basin, East China[J]. International Journal of Greenhouse Gas Control, 2012, 11: 52-63.
    [16] [11] DE Simone S, KREVOR S. A tool for first order estimates and optimisation of dynamic storage resource capacity in saline aquifers[J]. International Journal of Greenhouse Gas Control, 2021, 106: 103258.
    [17] [12] NORDBOTTEN J M, CELIA M A, BACHU S. Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection[J]. Transport in Porous media, 2005, 58: 339-360.
    [18] [13] 刁玉杰, 朱国维, 金晓琳, 等. 四川盆地理论 CO2地质利用与封存潜力评估[J]. 地质通报, 2017, 36(6): 1088-1095.
    [19] DIAO Y, ZHU G, JIN X, et al. Theoretical potential assessment of CO2 geological utilization and storage in the Sichuan Basin[J]. Geological Bulletin of China, 2017, 36(6): 1088-1095.
    [20] [14] WEI N, Li X, WANG Y, et al. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China[J]. International Journal of Greenhouse Gas Control, 2013, 12: 231-246.
    [21] [15] JAFARI M, CAO S C, JUNG J. Geological CO2sequestration in saline aquifers: Implication on potential solutions of China’s power sector[J]. Resources, Conservation and Recycling, 2017, 121: 137-155.
    [22] [16] 范基姣, 贾小丰, 胡秋韵, 等. 四川盆地深部咸水含水层二氧化碳地质储存适宜性评价[J]. 地下水, 2014 (6): 59-64.
    [23] FAN J J, JIA X F, HU Q Y, et al. Potential and suitable conditions evaluation of CO2 storage in the salt water aquifer in the depth of Sichuan Basin[J]. Ground Water, 2014, 36(6): 59-64.
    [24] [17] SUN X, ALCALDE J, GOMEZ-RIVAS E, et al. Appraisal of CO2 storage potential in compressional hydrocarbon-bearing basins: global assessment and case study in the Sichuan Basin (China)[J]. Geoscience Frontiers, 2020, 11(6): 2309-2321.
    [25] [18] CUMMING L, GUPTA N, SMINCHAK J, et al. International collaboration to investigate carbon dioxide storage opportunities for a coal-fired power plant in Sichuan Basin, China[J]. Energy Procedia, 2014, 63: 4918-4925.
    [26] [19] GANJDANESH R, HOSSEINI S A. Geologic carbon storage capacity estimation using enhanced analytical simulation tool (EASiTool)[J]. Energy Procedia, 2017, 114: 4690-4696.
    [27] [20] SZULCZEWSKI M L, MACMINN C W, HERZOG H J, et al. Lifetime of carbon capture and storage as a climate-change mitigation technology[J]. Proceedings of the National Academy of Sciences, 2012, 109(14): 5185-5189.
    [28] [21] 林耀庭, 陈绍兰. 四川盆地地下卤水勘探开发前景展望[D]. , 2008.
    [29] Lin Y T, Chen S L. Exploration and development prospect of underground brine in Sichuan Basin[J]. J. Salt Lake Res, 2008, 16: 1-7.
    [30] [22] Zhou X, Li C. Hydrogeochemistry of deep formation brines in the central Sichuan Basin, China[J]. Journal of Hydrology, 1992, 138(1-2): 1-15.
    [31] [23] 林耀庭. 四川盆地三叠系地下卤水储层特征及其富集的控制作用[D].1999.
    [32] Lin Y T. Storage characteristics of the ground brine of trias is sichuan basin and the determination factors of its enrichment[D].1999.
    [33] [24] 林耀庭, 何金权, 王田丁, 等. 四川盆地中三叠统成都盐盆富钾卤水地球化学特征及其勘查开发前景研究[J]. 化工矿产地质, 2002, 24(2): 72-84.
    [34] Lin Y T, He J Q, et al. Geochemical characteristics of potassium-rich brinein middle triassic chengdu salt basin of sichuan basinand its prospects for brine tapping[J]. Geology of Chemical Minerals, 2002, 24(2): 72-84.
    [35] [25] 林耀庭, 姚有成, 康正华, 等. 四川宣达盐盆富钾富矿卤水地球化学特征及资源意义研究[J]. 盐湖研究, 2004, 12(1): 8-18.
    [36] Lin Y T, Yao Y C, Kang Z H, et al. Study on the geochemical characteristics and resource significance of the highly mineralized potassium-rich brine in the Sichuan Xuanda Salt Basin[J]. Journal of Salt Lake Research, 2004, 12(1): 8-18.
    [37] [26] 王美芳. 川西三叠系水文地质特征及富钾卤水资源量计算[D]. 成都理工大学, 2014.
    [38] Wang M F.A Study on the Triassic Hydrogeological characteristics of the Western of Sichuan Basin and calculating the brine resources[D].Chengdu University of Technology, 2014.
    [39] [27] Yang W, Liu M, Wei G, et al. Lithofacies paleogeography and characteristics of large-scale reservoirs of the Middle Triassic Leikoupo Formation in Sichuan Basin, China[J]. Journal of Natural Gas Geoscience, 2021, 6(5): 255-268.
    [40] [28] Tian H, Zhang J, Xin Y, et al. Reservoir characteristics and forming conditions for the Middle Triassic Leikoupo Formation in the western Sichuan Basin, China[J]. Journal of Natural Gas Geoscience, 2019, 4(2): 101-110.
    [41] [29] REDLICH O, KWONG J N S. On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions[J]. Chemical reviews, 1949, 44(1): 233-244.
    [42] [30] SPYCHER N, PRUESS K, ENNIS-KING J. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar[J]. Geochimica et cosmochimica acta, 2003, 67(16): 3015-3031.
    [43] [31] ALTUNIN V V, SAKHABETDINOV M A. Viscosity of liquid and gaseous carbon dioxide at temperatures 220-1300 K and pressure up to 1200 bar[J]. Teploenergetika, 1972, 8: 85-89.
    [44] [32] BATZLE M, WANG Z. Seismic properties of pore fluids[J]. Geophysics, 1992, 57(11): 1396-1408.
    [45] [33] 李传亮. 岩石压缩系数与孔隙度的关系[J]. 中国海上油气 (地质), 2003, 17(5): 355-358.
    [46] Li C L. The relationship between rock compressibility and porosity[J]. China Offshore Oil and Gas (Geology), 2003, 17(5): 355-358.
    [47] [34] Brown E T, Hoek E. Trends in relationships between measured in-situ stresses and depth[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1978, 15(4): 211-215.
    [48] [35] Jaeger J C, Cook N G W, Zimmerman R. Fundamentals of rock mechanics[M]. John Wiley & Sons, 2009.
    [49] [36] Bachu S, Adams J J. Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution[J]. Energy Conversion and management, 2003, 44(20): 3151-3175.
    [50] [37] Duan Z, Sun R. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar[J]. Chemical geology, 2003, 193(3-4): 257-271.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:176
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-05-02
  • 最后修改日期:2023-08-08
  • 录用日期:2023-08-15
文章二维码