冷喷涂Cu/W复合涂层的显微组织及磨损性能研究
作者:
基金项目:

陕西省重点研发计划(2023GXLH-050)


Study on Microstructure and Wear Properties of Cold Sprayed Cu/W Composite Coatings
Author:
Affiliation:

School of Chemistry and Life Science in Hubei University of Education, Hubei Key Laboratory of Purification and Application of Anticancer Active Substances, and Hubei Engineering and Technology Research Center of Environmental Purification Materials, 43020, Wuhan, China

Fund Project:

Key Research and Development Projects of Shaanxi Province (2023GXLH-050)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    采用冷喷涂技术在纯铜(Cu)基体上制备了不同钨(W)含量的Cu/W复合涂层,系统研究W含量对涂层沉积特性和力学性能的影响规律。采用场发射电子显微镜(SEM)、能谱分析仪(EDS)、X射线衍射仪(XRD)、显微硬度计和摩擦磨损试验机对涂层的微观组织结构、相组成、显微硬度和摩擦磨损性能进行表征分析。结果表明:冷喷涂复合涂层没有出现氧化和相变现象,添加10wt.%W含量的涂层孔隙率达到最低2.42%,但随着W含量的增加孔隙率逐渐增加。涂层硬度随着W含量的增加而增加,在30wt.%W含量的复合涂层中达到最大值为62.9HV0.2。与纯铜涂层相比,20wt.%W含量的Cu/W复合涂层的摩擦系数和磨损率达到最佳,这是因为硬质W颗粒的加入对涂层有一定的夯实和第二相强化作用使涂层孔隙率降低,显微硬度增加,然而当W颗粒含量增加时,软相Cu不能对沉积的W颗粒产生良好的包裹作用,致使复合涂层在摩擦磨损过程中W颗粒脱落,导致复合涂层摩擦系数和磨损率的增加。

    Abstract:

    Cu/W composite coatings with different tungsten (W) contents were prepared on pure copper (Cu) substrate using cold spraying technology. The influence of W content on the deposition characteristics and mechanical properties of the coatings was systematically studied. The microstructure, phase composition, microhardness, and friction and wear properties of the coating were characterized and analyzed using field emission electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), microhardness tester, and wear testing machine. The results showed that there was no oxidation and phase transition phenomenon in the cold sprayed composite coatings. The porosity of the coating with 10wt.%W content reached a minimum of 2.42%, and gradually increased with the increase of W content. The microhardness increases with the increase of W content, reaching a maximum value of 62.9HV0.2 in the composite coating with 30wt.%W content. Compared with pure Cu coatings, Cu/W composite coatings with 20wt.%W content showed an excellent friction coefficient and wear rate. This is attribute to that the addition of hard W particles has the role of compaction and second phase strengthening, which reduces the porosity of the coating and increases the microhardness. However, when the content of W particles increased, the soft phase Cu cannot effectively wrap the excess W particles, resulting in the spalling of W particles during the wear process, which induced the increase of friction coefficient and wear rate.

    参考文献
    [1] 鲍骏,卞国柱,伏义路,用溶胶—凝胶法制备CoMoO4超细粒子催化剂[J], 催化学报,1999,20(6):45-648.
    [2] Marques V S, Cavalcante L S, Sczancoski J C, et al. Effect of different solvent ratios (Water/Ethylene Glycol) on the growth process of CaMoO4 crystals and their optical properties [J]. Crystal Growth & Design, 2010, 10(11): 4752-4768.
    [3] Yuan Y F, Lin J X, Zhang Z Q, et al. Cobalt molybdate nanoflake assembling porous pillar array for high performance pseudocapacitors [J]. Materials Letters, 2016, 164: 260-268。
    [4] 李洪波,CoMoO4基电极的制备及其电化学性能研究[M],硕士学位论文, 江苏:江苏科技大学,2022年5月。
    [5] 张志强,袁永锋,郭绍义,等. 聚吡咯包覆CoMoO4纳米片自组装多孔柱阵列制备及其赝电容性能研究[J],浙江理工大学学报(自然科学版),2017,37(1):18-23.
    [6] 王晶,CoMoO4基核壳纳米复合材料的构筑及其电容性能研究[D],博士学位论文,哈尔滨:哈尔滨工业大学,2017年6月.
    [7] Wu Z S, Zhou G, Yin L C, et al. Graphene/metal oxide composite electrode materials for energy storage [J]. Nano Energy, 2012, 1: 107-131.
    [8] Zhu Y,Murali S, Stollerm D, et al. Carbon-based supercapacitors produced by activation of graphene [J]. Science, 2011, 332(6037): 1537-1541.
    [9] 邹正光,俞惠江,龙飞,范艳煌,超声辅助Hummers法制备氧化石墨烯[J]. 无机化学学报,2011,27(9):1753-1757.
    [10] 常晓璇, 李容, 张文丽, 苟兴龙. CoMoO4/rGO复合材料的制备及储锂性能研究[J]. 长江大学学报(自科版), 2016,13(07):17-21+3-4.
    [11] 华丽, 曾建华, 胡庆兰, 欧小文, 朱玉涵, 刘俊逸, 邵玉娇, 汪云凡. Li2MnSiO4/C 锂电池复合电极材料制备及电化学性能研究[J]. 湖北第二师范学院学报, 2021, 38(8): 1-6.
    [12] 王其钰, 张杰男, 周格. 锂电池扣式电池的组装充放电测量和数据分析[J]. 储能科学与技术, 2018, 7(2): 327-329.
    [13] 华丽,严珊,杨美莲,郑平,多孔碳纳电池负极材料制备及电化学性能研究[J],湖北第二师范学院学报,2016,33(8):1-4.
    [14] 华丽,陈沐泽,杨晨,张洪权,戴伟,段连生,曾国平,锂电池负极α-Fe2O3纳米粒子制备及电化学性能研究[J],湖北第二师范学院学报,2014,31(2):1-5.
    [15] 付永胜. 石墨烯—磁性尖晶石型铁氧体多功能异质结的控制合成及其性质研究[D]. 博士学位论文,南京:南京理工大学, 2013.
    [16] 华丽, 陈梦云, 谭芬, 陈玲, 刘佩, 段连生. 锂离子电池Fe3O4-SnO2-石墨烯复合阳极材料制备及性能研究[J]. 湖北第二师范学院学报, 2015, 32(02):1-6.
    [17] Liu M C, Kong L B, Lu C, et al. Design and synthesis of CoMoO4-NiMoOxH2O bundles with improved electrochemical properties for supercapacitors [J]. Journal of Materials Chemistry A(J. Mater. Chem. A), 2013, 1:1380-1387.
    [18] 戎泽,袁永锋,郭绍义,林金鑫,张志强,C包覆CoMoO4复合纳米片阵列材料的制备及赝电容性能的研究,浙江理工大学学报(自然科学版),2017,37(3):343-347.
    [19] Qiu K W, Lan Y, Zhang D Y, et al. Mesoporous, hierarchical core/shell structured ZnCo2O4/MnO2 nanocone forests for high-performance supercapacitors [J]. Nano Energy, 2015, 11:687-696.
    [20] Kong D Z, Luo J S, Wang Y L, et al. Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: morphology control and electrochemical energy storage [J]. Adv. Funct. Mater. 2014, 26:1044-1051.
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-17
  • 最后修改日期:2024-02-23
  • 录用日期:2024-03-08
文章二维码