电动汽车无线充电系统恒流/恒压输出与抗偏移磁能耦合机构研究
作者:
作者单位:

1.广西电网有限责任公司柳州供电局;2.重庆大学自动化学院

中图分类号:

TM724


Research on constant current/constant voltage output of electric vehicle wireless charging system and anti-offset magnetic energy coupling mechanism
Author:
Affiliation:

1.Liuzhou Power Supply Bureau of Guangxi Power Grid Co,Ltd;2.School of Automation, Chongqing University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在电动汽车无线充电系统中,负载锂电池的充电过程为先恒流再恒压,因此WPT系统需要同时具备实现两种输出状态的能力,且可以在两种输出状态之间进行平稳切换。基于此本文分析双边LCC拓扑实现负载无关的恒流和恒压输出的条件,并给出了参数设计方法。针对系统可能会随机在不同方向上出现位移的情况,采用了一种双向同轴平面线圈的结构,即原边线圈由内外两个沿相反方向绕制的线圈串联组成。通过仿真和实验验证了本文提出的电动汽车无线充电系统具备同时实现恒流\恒压输出的能力,且在多方向偏移工况下仍能实现稳定输出。

    Abstract:

    In the EV wireless charging system, the charging process of the loaded lithium battery is constant current followed by constant voltage. Therefore, the WPT system needs to have the ability to achieve two output states at the same time, and can smoothly switch between the two output states. Based on this, this article analyzes the conditions for achieving load independent constant current and constant voltage output in a bilateral LCC topology, and provides a parameter design method. In response to the possibility of random displacement in different directions in the system, a bidirectional coaxial planar coil structure is adopted, where the primary coil is composed of two coils wound in opposite directions, inner and outer, in series. The proposed EV wireless charging system has the ability to simultaneously achieve constant current/voltage output through simulation and experimental verification, and can still achieve stable output under multi-directional offset conditions.

    参考文献
    [1] 苏玉刚,侯信宇,戴欣. 磁耦合无线电能传输系统异物检 测 技 术 综 述 [J]. 中 国 电 机 工 程 学报,2021,41(2):715-727.
    [2] Peschiera B, Williamson S S. Review of inductive power transfer technology for electric and plug-in hybrid electric vehicles[C]//IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2013: 4672-4677.
    [3] Zhang Y, Yan Z, Liang Z, et al. A high-power wireless charging system using LCL-N topology to achieve a compact and low-cost receiver[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 131-137.
    [4] Colak K, Asa E, Bojarski M, et al. A novel phase-shift control of semibridgeless active rectifier for wireless power transfer[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6288-6297.
    [5] Qu X, Han H, Wong S, et al. Hybrid IPT topologies with constant current or constant voltage output for battery charging applications[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6329-6337.
    [6] Mai R, Chen Y, Li Y, et al. Inductive power transfer for massive electric bicycles charging based on hybrid topology switching with a single inverter[J]. IEEE Transactions on Power Electronics, 2017, 32(8): 5897-5906.
    [7] Z Huang, C Lam, P Mak, et al. A Single-Stage Inductive-Power-Transfer Converter for Constant-Power and Maximum-Efficiency Battery Charging[J]. IEEE Transactions on Power Electronics, 2020, 35(9): 8973-8984.
    [8] Wong C S, Wong M C, Cao L, et al. Design of high-efficiency inductive charging system with load-independent output voltage and current tolerant of varying coupling condition[J]. IEEE Transactions on Power Electronics, 2021, 36(12): 13546-13561.
    [9] Zheng C, Lai J S, Chen R, et al. High-efficiency contactless power transfer system for electric vehicle battery charging application[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1): 65-74.
    [10] Jiang Y, Wang L, Wang Y, et al. Analysis, design, and implementation of WPT system for EV’s battery charging based on optimal operation frequency range[J]. IEEE Transactions on Power Electronics, 2019, 34(7): 6890-6905.
    [11] Ke G, Chen Q, Gao W, et al. Research on IPT resonant converters with high misalignment tolerance using multicoil receiver set[J]. IEEE Transactions on Power Electronics, 2020, 35(4): 3697-3712.
    [12] Tejeda A, Kim S, Lin F Y, et al. A hybrid solenoid coupler for wireless charging applications[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5632-5645.
    [13] Zhao L, Thrimawithana D J, Madawala U K. Hybrid bidirectional wireless EV charging system tolerant to pad misalignment[J]. IEEE Transaction on Industrial Electronics, 2017, 64(9): 7079-7086.
    [14] Zhao L, Thrimawithana D J, Madawala U K, et al. A misalignment-tolerant series-hybrid wireless EV charging system with integrated magnetics[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1276-1285.
    [15] Han W, Chau K T, Jiang C, et al. Accurate position detection in wireless power transfer using magneto resistive sensors for implant applications[J]. IEEE Transactions on Magnetics, 2018, 54(11): 1-5.
    [16] Liu X, Liu C, Han W, et al. Design and implementation of a multi-purpose TMR sensor matrix for wireless electric vehicle charging[J]. IEEE Sensors Journal, 2019, 19(5): 1683-1692.
    [17] Zhang B, Chen Q, Ke G, et al. Coil positioning based on DC pre-excitation and magnetic sensing for wireless electric vehicle charging[J]. IEEE Transaction on Industrial Electronics, 2021, 68(5): 3820-3830.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:166
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-05-26
  • 最后修改日期:2023-07-05
  • 录用日期:2023-08-24
文章二维码