GNSS失锁下非完整性约束GNSS_INS_OD自适应组合导航方法
作者单位:

1.重庆大学;2.重庆理工大学

基金项目:

四川省科技计划资助(基金号:2023YFQ0026)


GNSS/INS/OD Adaptive Integrated Navigation Method with Non Integrity Constraints under GNSS Lockout
Author:
Affiliation:

1.Chongqing University;2.Chongqing University of Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对松耦合模式下的GNSS/INS组合导航系统,全球卫星导航系统(GNSS)信号容易受到环境的影响,在部分场景中可能会导致信号丢失。针对GNSS失锁的情况,提出将非完整性约束(NHC)应用于轮速计(OD)/捷联惯导系统(INS),可以有效抑制在GNSS信号失锁的情况下纯惯性导航的误差发散。同时,提出一种基于新息的自适应卡尔曼滤波算法和考虑车辆运动关系的自适应NHC噪声方法,可以有效增强在GNSS失锁和车辆转弯场景下的导航定位能力。通过场景实测数据验证表明:使用自适应卡尔曼滤波和自适应NHC噪声的组合导航系统在GNSS信号失锁10s的情况下能保证“cm”级导航精度,其定位精度相较于使用传统扩展卡尔曼滤波方案和只使用自适应NHC噪声方案提升了10%,测速精度提升了约30%,可以满足导航系统在GNSS失锁环境下的高精度、高可靠性导航定位服务。

    Abstract:

    For the GNSS/INS Integrated Navigation System in the loose coupling mode, the global satellite navigation system (GNSS) signal is vulnerable to environmental impact, which may lead to signal loss in some scenes. In view of the GNSS lock out situation, the non integrity constraint (NHC) is applied to the wheel tachometer (OD)/strapdown inertial navigation system (INS), which can effectively suppress the error divergence of pure inertial navigation in the case of GNSS signal lock out. At the same time, an adaptive Kalman filter algorithm based on innovation and an adaptive NHC noise method considering the vehicle motion relationship are proposed, which can effectively enhance the navigation and positioning ability in the GNSS lock out and vehicle turning scenarios. The verification of the scene measured data shows that the integrated navigation system using adaptive Kalman filter and adaptive NHC noise can ensure the navigation accuracy of "cm" level in the case of GNSS signal losing lock for 10s. Compared with the traditional extended Kalman filter scheme and the scheme using only adaptive NHC noise, its positioning accuracy is improved by 10%, and the speed measurement accuracy is improved by about 30%, which can meet the high accuracy of the navigation system in the GNSS losing lock environment High reliability navigation and positioning service.

    参考文献
    [1] 沈凯,刘庭欣,左思琪等.复杂城市环境下GNSS/INS组合导航可观测度分析及鲁棒滤波方法[J].仪器仪表学报,2020,41(09):252-261.DOI:10.19650/j.cnki.cjsi.J2006432. Shen Kai,Liu Tingxin,ZuoSiqi, et al. Observability Analysis and Robust Fusion Algorithms of GNSS/INS Integrated Navigation in Complex Urban Environment[J]. Chinese Journal of Scientific Instrument,2020,41(9):252-261
    [2] 王富,韩保民,胡亮亮等.城市复杂环境下GNSS/INS组合导航算法研究[J].大地测量与地球动力学,2022,42(01):15-20.OI:10.14075/j.jgg.2022.01.004. WANG Fu,HAN Baomin,HU Liangliang et al. Research on GNSS/INS Integrated Navigation Algorithm in Complex Urban Environments[J]. jgg, 2022, 42(1): 15-20.
    [3] 朱元,吴博宇,陆科等.城市复杂环境下的车辆组合定位算法研究[J].重庆理工大学学报(自然科学),2023,37(01):9-18.
    [4] 李增科,王坚,高井祥等.自适应联邦滤波器在GPS-INS-Odometer组合导航的应用[J].测绘学报,2016,45(02):157-163.LI Zengke, WANG Jian, GAO Jingxiang, et al. The application of adaptive federated filter in GPS-INS-Odometer integrated navigation [J]. Acta Geodaetica et Cartographica Sinica,2016,45(2): 157-163.
    [5] Gao Z,Ge M,Li Y,et al.Odometer,low-cost inertial sensors,and four-GNSS data to enhance PPP and attitude determination[J].GPS Solutions,2018,22(3):57.
    [6] WANG, MAOSONG, WU, WENQI, HE, XIAOFENG, et al. Consistent ST-EKF for Long Distance Land Vehicle Navigation Based on SINS/OD Integration[J]. IEEE Transactions on Vehicular Technology,2019,68(11):10525-10534. DOI:10.1109/TVT.2019.939679.
    [7] Ouyang W , Wu Y , Chen H . INS/Odometer Land Navigation by Accurate Measurement Modeling and Multiple-Model Adaptive Estimation:, 10.1109/TAES.2020.011998[P]. 2020.
    [8] Du S , Zhang S , Gan X . A hybrid fusion strategy for the land vehicle navigation using MEMS INS, odometer and GNSS[J]. IEEE Access, 2020, PP(99):1-1.
    [9] 刘万科,农旗,陶贤露,等,非完整约束的 OD/SINS 自适应组合导航方法J],测绘学报,2022,51(1)9-17,DOL.10,11947/i.AGCS.2022.0210122.
    [10] LIU Wanke,NONG Qi, TAO Xianlu, et al,OD/SINS adaptive integrated navigation method with non-holonomic constraints[J], Acta Geodaetica et Cartographica Sinica,2022,51(1) ;9-17,DOl;10,11947/j.AGCS,2022,20210122.
    [11] [10] 邓召文,张福兴,基于转向半径的汽车稳态转向特性分析[J].农业装备与车辆工程,2007(1):23-26.DENG Zhaowen, ZHANG Fuxing. The analysis of steadystate steering characteristic turning radius- based in vehicle[J]. Agricultural Equipment &. Vehicle Engineering,2007(1) :23-26.
    [12] [11] 胡昊杰,朱锋,张小红.利用MEMS-IMU检测车辆运动状态的自适应方法[J].导航定位学报,2020,8(05):11-18.DOI:10.16547/j.cnki.10-1096.20200502. HU Haojie,ZHU Feng, ZHANG Xiaohong. An adaptive method to detect vehicle motion state using MEMS-IMU[J].Journal of Navigation and Positioning, 2020, 8 (05) :11-18
    [13] [12] Gao X L,Luo H Y,Ning B K,et al. RL-AKF: An Adaptive Kalman Filter Navigation Algorithm Based on Rein-forcement Learning for Ground Vehicles[J]. Remote Sens-ing,2020,12(11):1 704
    [14] [13] Ryan J G,Bevly D M On the Observability of Loosely Coupled Global Positioning System/Inertial Navigation System Integrations with Five Degree of Freedom and Four Degree of Freedom Inertial Measurement Units[J]. Journal ofDynamic Systems,Measurement, and Control, 2014 , 136(2): 021023
    [15] [14] 吴晓倩,卢秀山,王胜利等.一种基于改进自适应卡尔曼滤波的GNSS/INS组合导航算法[J].科学技术与工程,2020,20(03):913-917.Wu Xiaoqian, lu Xiushan, Wang Shengli, et al. A CNSS/INS integrated navigation algorithm based on modified adaptive kalman filter ljScience Technology and Engineering,2020,20( 3) : 913-917
    [16] [15] 李刚,蔡成林,李思敏等.抗差与自适应组合的卡尔曼滤波算法在动态导航中的研究[J].重庆邮电大学学报(自然科学版),2015,27(01):37-43.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:299
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-06-07
  • 最后修改日期:2023-09-20
  • 录用日期:2023-09-22
文章二维码