基于物理信息神经网络的非线性瞬态热传导正/反问题研究
作者:
作者单位:

合肥工业大学 土木与水利工程学院 合肥 230009

基金项目:

国家自然科学基金(12002181); 中央高校基本科研业务费(JZ2022HGQA0165, JZ2022HGTB0243)


Solving nonlinear transient heat conduction forward/inverse problem based on physical-information neural networks
Author:
Affiliation:

Hefei University of Techonlogy

Fund Project:

National Natural Science Foundation of China (12002181);Fundamental Research Funds for the Central Universities (JZ2022HGQA0165, JZ2022HGTB0243)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | | | |
  • 文章评论
    摘要:

    文章基于物理信息神经网络(Physics-informed Neural Networks,PINN)求解非线性瞬态热传导问题并识别随温度变化的导热系数。首先,基于热传导问题的控制方程,利用初始条件和边界条件,构建损失函数。然后,应用自动微分算法求解控制方程中温度的偏导数。使用梯度下降算法,更新网络参数,最小化损失函数,实现热传导正问题的求解,并讨论了不同隐藏层数、神经元数量和域内数据点数量对计算结果的影响。最后,采用PINN识别随温度变化的导热系数,利用控制方程、测量温度和计算温度的残差构建损失函数,通过梯度下降算法,更新网络参数和导热系数,使其逼近于精确解,并比较了不同的测点数量和测量误差对计算结果的影响。结果表明,PINN能够有效求解非线性瞬态热传导问题并识别与温度相关的导热系数。

    Abstract:

    A method based on the physics-informed neural networks (PINN) is proposed to solve the transient nonlinear heat conduction problems and estimate the temperature-dependent thermal conductivity. Firstly, a loss function is formulated with the residual error of partial differential equation, initial conditions and boundary conditions for the heat conduction problems. Then, the automatic differentiation is applied to acquire the partial derivatives of temperature in the partial differential equation. The heat conduction problems are solved by applying gradient descent algorithm to update the network parameters and to minimize the loss function. The influences of different numbers of hidden layers, neurons and interior collection points on the results are discussed. Finally, the PINN is applied to identify the temperature-dependent thermal conductivities. The loss function is formulated with the residual error of governing equation, measured temperature and computed temperature. The network parameters and thermal conductivity are updated by the gradient descent algorithm to approximate the exact solution. The influences of different measurement points and errors on results are also compared. The results show that the proposed method is an effective approach to solve the transient heat conduction problem and estimate the temperature-dependent thermal conductivity.

    参考文献
    [1] Reddy J N. Introduction to the finite element method[M]. McGraw-Hill Education, 2019.
    [2] Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational physics, 2019, 378: 686-707.
    [3] Karniadakis G E, Kevrekidis I G, Lu L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3: 422-440.
    [4] Baydin A G, Pearlmutter B A, Radul A A, et al. Automatic differentiation in machine learning: a survey[J]. Journal of Marchine Learning Research, 2018, 18: 1-43.
    [5] Yu Z B, Li K, Liu J, et al. An Equivalent Identification Method for Dynamic Loads Acting on Nonlinear Structures[J]. International Journal of Computational Methods, 2021, 18: 2150037.
    [6] Mohebbi F, Sellier M. Identification of space-and temperature-dependent heat transfer coefficient[J]. International Journal of Thermal Sciences, 2018, 128: 28-37.
    [7] Cui M, Zhao Y, Xu B, et al. A new approach for determining damping factors in Levenberg-Marquardt algorithm for solving an inverse heat conduction problem[J]. International Journal of Heat and Mass Transfer, 2017, 107: 747-754.
    [8] Cui M, Zhao Y, Xu B B, et al. Inverse analysis for simultaneously estimating multi-parameters of temperature-dependent thermal conductivities of an Inconel in a reusable metallic thermal protection system[J]. Applied Thermal Engineering, 2017, 125: 480-488.
    [9] Mera N S, Elliott L, Ingham D B, et al. An iterative BEM for the Cauchy steady state heat conduction problem in an anisotropic medium with unknown thermal conductivity tensor[J]. Inverse Problems in Engineering, 2000, 8(6): 579-607.
    [10] 周焕林, 严俊, 余波等. 识别含热源瞬态热传导问题的热扩散系数[J]. 应用数学和力学, 2018, 39: 160-169.Zhou H L, Yan J, Yu B, et al. Identification of thermal diffusion coefficients for transient heat conduction problems with heat sources[J]. Applied Mathematics and Mechanics, 2018, 39: 160-169. (in Chinese)
    [11] 周焕林, 严俊, 余波等. 基于改进布谷鸟算法识别瞬态热传导问题的导热系数[J]. 计算物理, 2018, 35: 212-220.Zhou H L, Yan J, Yu B, et al. Identification of thermal conductivity for transient heat conduction[J]. Chinese Journal of Computational Physics, 2018, 35: 169. (in Chinese)Problems by Improved Cuckoo Search Algorithm
    [12] 吴秀壮, 周焕林, 陈豪龙. 基于布谷鸟搜索算法的弹性力学边界条件识别[J]. 重庆大学学报, 2020, 43: 40-49.Wu X Z, Zhou H L, Chen H L. Identification of elasticity boundary conditions based on cuckoo search algorithm[J]. Journal of Chongqing University, 2020, 43: 40-49. (in Chinese)
    [13] Sun S C, Qi H, Yu X Y, et al. Inverse identification of temperature-dependent thermal properties using improved Krill Herd algorithm[J]. International Journal of Thermophysics, 2018, 39: 1-21.
    [14] Wang X, Li H, Li Z. Estimation of interfacial heat transfer coefficient in inverse heat conduction problems based on artificial fish swarm algorithm[J]. Heat and Mass Transfer, 2018, 54: 3151-3162.
    [15] Li X, Ning S, Liu Z, et al. Designing phononic crystal with anticipated band gap through a deep learning based data-driven method[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112737.
    [16] Chen H L, Wang K J, Du Z B, et al. Predicting the thermophysical properties of skin tumor based on the surface temperature and deep learning[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121804.
    [17] 陈豪龙, 柳占立. 基于数据驱动模型求解热传导反问题[J]. 计算力学学报, 2021, 38: 272-279.Chen H L, Liu Z L. Solving the inverse heat conduction problem based on data driven model[J]. Journal of Chongqing University, 2021, 38: 272-279. (in Chinese)
    [18] Li X, Chen H L, Liu Z L, et al. Identifying varying thermal diffusivity of inhomogeneous materials based on a hybrid physics-informed neural network[J]. International Journal of Applied Mechanics, 2022, 14: 2250027.
    [19] 汤卓超, 傅卓佳. 基于物理信息的神经网络求解曲面上对流扩散方程[J]. 计算力学学报, 2022: 1-7. http://kns.cnki.net/kcms/detail/21.1373.o3.20220728.1148.012.html.Tang Z C, Fu Z J. Physics-informed neural networks for solving convection-diffusion equations on surfaces[J]. Chinese Journal of Computational Mechanics, 2022: 1-7. http://kns.cnki.net/kcms/detail/21.1373.o3.20220728.1148.012.html.(in Chinese)
    [20] Cai S Z, Wang Z C, Wang S F, et al. Physics-informed neural networks for heat transfer problems[J]. Journal of Heat Transfer, 2021, 143.
    [21] 陆至彬, 瞿景辉, 刘桦, 等. 基于物理信息神经网络的传热过程物理场代理模型的构建[J]. 化工学报, 2021, 72: 1496-1503.Lu Z B, Qu J H, Liu H, et al. Surrogate modeling for physical fields of heat transfer processes based on physics-informed neural network[J]. Chinese Journal of Chemical Engineering, 2021, 72: 1496-1503. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:518
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-06-13
  • 最后修改日期:2023-09-20
  • 录用日期:2023-09-26
文章二维码