基于方位信息的轮式机器人动态编队控制
作者:
作者单位:

1.陕西科技大学;2.陕西科技大学 机电工程学院;3.陕西科技大学 电气与控制工程学院

中图分类号:

TP242

基金项目:

陕西省重点研发计划项目: 2023-YBGY-277;陕西省重点研发计划项目(2023-YBGY-409)


Dynamic formation control of wheeled robots based on azimuth information
Author:
Affiliation:

1.陕西科技大学;2.School of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology;3.School of Electrical and Control Engineering, Shaanxi University of Science & Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对非完整约束的多机器人动态编队中,各机器人只能获取相邻机器人方位信息的情况,提出了一种纯方位角信息的分布式PID编队控制算法。考虑领航机器人易受风向或路面平整度等扰动影响而带来无法保持编队队形的问题,该算法通过引入跟随机器人的相对位置和相对速度反馈,能够有效地消除稳态误差,抑制干扰的影响,改善系统的动态性能,并保证系统的全局稳定性。然后,利用Routh-Hurwitz稳定性判据进行稳定性分析,验证编队系统的全局稳定性。最后,通过仿真实验比较了所提控制律与基于纯比例和比例积分的控制律在收敛速度、抗干扰能力等方面的性能。仿真结果表明:所提控制律能够使领航者受到干扰后依然形成期望编队,并且能够实现对领航者轨迹的快速跟踪,总方位角误差的相对最大偏差下降了5.4%。

    Abstract:

    Aiming at the situation that each robot can only obtain the azimuth information of adjacent robots in the dynamic formation of multiple robots with incomplete constraints, a distributed PID formation control algorithm with pure azimuth information is proposed. Considering that the pilot robot is susceptible to disturbances such as wind direction or road surface flatness, which brings about the problem that the formation cannot be maintained, the algorithm can effectively eliminate the steady-state error, suppress the influence of interference, improve the dynamic performance of the system, and ensure the global stability of the system by introducing the relative position and relative speed feedback of the following robot. Then, the Routh-Hurwitz stability criterion is used to perform stability analysis to verify the global stability of the formation system. Finally, through simulation experiments, the performance of the proposed control law and the control law based on pure proportion and proportional integration in terms of convergence speed and anti-interference ability are compared. The simulation results show that the proposed control law can make the pilot still form the expected formation after being disturbed, and can realize the fast tracking of the leader"s trajectory, and the relative maximum deviation of the total azimuth error is reduced by 5.4%.

    参考文献
    [1] 刘银萍,杨宜民.多机器人编队控制的研究综述[J].控制工程,2010,17(S3):182-186.DOI:10.14107/j.cnki.kzgc.2010.s3.058.
    [2] 王帅,周乐来,李贻斌,路广林.多移动机器人编队领航跟随方法研究进展[J].无人系统技术,2019,2(05):1-8.
    [3] Zhengquan Yang, Xiaofang Pan, Qing Zhang Zengqiang Chen (2020) Formation control of first-order multi-agents with region constraint, Automatika, 61:4, 651-656, DOI: 10.1080/00051144.2020.1814979
    [4] Kwang-Kyo Oh, Myoung-Chul Park, and Hyo-Sung Ahn. 2015. A survey of multi-agent formation control. Automatica 53, C (March 2015), 424–440. https://doi.org/10.1016/j.automatica.2014.10.022
    [5] S. Zhao and D. Zelazo, "Bearing Rigidity Theory and Its Applications for Control and Estimation of Network Systems: Life Beyond Distance Rigidity," in IEEE Control Systems Magazine, vol. 39, no. 2, pp. 66-83, April 2019, doi: 10.1109/MCS.2018.2888681.
    [6] 郭鹏军,张睿,高关根等.基于相对速度和位置辅助的无人机编队协同导航[J].上海交通大学学报,2022,56(11):1438-1446.DOI:10.16183/j.cnki.jsjtu.2022.32.
    [7] 郑重,刘帅,钱默抒等.航天器编队系统相对位置自适应分布式控制[J].中国惯性技术学报,2019,27(01):129-135.DOI:10.3695/j.cnki.12-1222/o3.2019.01.020.
    [8] Tsuyoshi Ogawa, Kazunori Sakurama, Shintaro Nakatani Shin-ichiro Nishida (2020) Relative Position Estimation for Formation Control with the Fusion of Predicted Future Information and Measurement Data, SICE Journal of Control, Measurement, and System Integration, 13:5, 225-232, DOI: 10.9746/jcmsi.13.225
    [9] 刘树光,王欢,刘荣华.基于距离的无人机编队路径跟踪控制[J].飞行力学,2023,41(01):27-33.DOI:10.13645/j.cnki.f.d.20230103.001.
    [10] Z. Chen, C. Jiang and Y. Guo, "Distance-based Formation Control of a Three-Robot System," 2019 Chinese Control And Decision Conference (CCDC), Nanchang, China, 2019, pp. 5501-5507, doi: 10.1109/CCDC.2019.8833001.
    [11] 孟蕾.基于距离约束的单领航者多智能体编队控制[J].电光与控制,2021,28(07):48-52.
    [12] 叶结松,龚柏春,李爽,都延丽,郝明瑞.基于相对方位信息和单间距测量的多智能体编队协同控制[J].航空学报,2021,42(07):480-491.
    [13] 李宪珞. 基于方位信息的非完整性多智能体编队控制[D].燕山大学,2020.DOI:10.27440/d.cnki.gysdu.2020.000798.
    [14] Z. Han, K. Guo, L. Xie 和 Z. Lin, “Integrated Relative Localization and Leader–Follower Formation Control”, IEEE Transactions on Automatic Control, vol. 64, no. 1, pp. 20-34, Jan. 2019, doi: 10.109/TAC.2018.2800790.
    [15] Y. H. Choi and D. Kim, "Distance-Based Formation Control With Goal Assignment for Global Asymptotic Stability of Multi-Robot Systems," in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2020-2027, April 2021, doi: 10.1109/LRA.2021.061071.
    [16] W. Dong and J. A. Farrell, "Cooperative Control of Multiple Nonholonomic Mobile Agents," in IEEE Transactions on Automatic Control, vol. 53, no. 6, pp. 1434-1448, July 2008, doi: 10.1109/TAC.2008.925852.
    [17] Zhao, Shiyu et al. "Distributed Control Of Angle-Constrained Cyclic Formations Using Bearing-Only Measurements".SSystems Amp; Control Letters, vol 63, 2014, pp. 12-24.SElsevier BV, https://doi.org/10.1016/j.sysconle.2013.0.003.
    [18] Basiri, Meysam et al. "Distributed Control Of Triangular Formations With Angle-Only Constraints".SSystems Amp; Control Letters, vol 59, no. 2, 2010, pp. 147-154.SElsevier BV, https://doi.org/10.016/j.sysconle.2009.12.010.
    [19] Bishop, Adrian N. "Distributed Bearing-Only Quadrilateral Formation Control".SIFAC Proceedings Volumes, vol 44, no. 1, 2011, pp. 4507-4512.SElsevier BV, https://doi.org/10.3182/20110828-6-it-1002.01735.
    [20] S. Zhao, Z. Li and Z. Ding, "Bearing-Only Formation Tracking Control of Multiagent Systems," in IEEE Transactions on Automatic Control, vol. 64, no. 11, pp. 4541-4554, Nov. 2019, doi: 10.109/TAC.2019.2903290.
    [21] J. Zhao, X. Yu, X. Li and H. Wang, "Bearing-Only Formation Tracking Control of Multi-Agent Systems With Local Reference Frames and Constant-Velocity Leaders" in IEEE Control Systems Letters, vol. 5, no. 1, pp. 1-6, Jan. 2021, doi: 10.1109/LCSYS.2020.2999972.
    [22] Q. Van Tran and J. Kim, "Bearing-Constrained Formation Tracking Control of Nonholonomic Agents Without Inter-Agent Communication," in IEEE Control Systems Letters, vol. 6, pp. 2401-2406, 2022, doi: 10.1109/LCSYS.2022.3159128.
    [23] S. Zhao and R. Zheng, "Flexible bearing-only rendezvous control of mobile robots," 2017 36th Chinese Control Conference (CCC), Dalian, China, 2017, pp. 8051-8056, doi: 10.3919/ChiCC.2017.8028630.
    [24] 谭瑶,梅杰.利用方位角信息的移动机器人编队控制[J].控制理论与应用,2021,38(07):1043-1050.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:137
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-07-07
  • 最后修改日期:2023-11-06
  • 录用日期:2023-11-07
文章二维码