计及非负和低秩特性的用电数据缺失值插补
作者:
作者单位:

1.云南电网有限责任公司计量中心;2.重庆大学 电气工程学院

中图分类号:

U469.72

基金项目:

云南电网科技项目


Interpolation of missing values in electricity consumption data considering non negative and low rank characteristics
Author:
Affiliation:

1.Measurement Center of Yunnan Power Grid Co.,Ltd.;2.School of Electrical Engineering,Chongqing University

Fund Project:

Yunnan Power Grid Technology Project

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着智能电表的广泛应用,电网公司积累了大量原始用电数据,然而复杂工作环境下用电信息采集设备仍存在数据丢失的现象。本文在充分考虑高斯噪声影响的情况下,对存在缺失的的原始用电数据进行填补。首先,对独立用户数据序列重排得到原始用电数据矩阵,将其中的理想用电数据矩阵进行非负矩阵分解替代;其次,分别选择F范数和核范数对高斯噪声和具有低秩特性的理想用电数据进行正则化约束以构建优化模型;最后,基于块坐标最小算法框架使用EM算法和直接法交替更新非负矩阵分解得到的矩阵因子,从而有效实现数据的准确插补。仿真分析和实验结果验证了算法的有效性和准确性。

    Abstract:

    With the wide application of smart meter, the power grid has accumulated a large number of original power consumption data. However, data loss still exists in power consumption information acquisition equipment under complex working environment. This article fills in the missing original electricity consumption data while fully considering the influence of Gaussian noise. Firstly, the original electricity consumption data matrix is obtained by rearranging the independent user data sequence, and the ideal electricity consumption data matrix is replaced by nonnegative matrix factorization; Secondly, F norm and kernel norm are selected to regularization Gaussian noise and ideal power consumption data with low rank characteristics to build optimization models; Finally, based on the block coordinate minimum algorithm framework, the matrix factors obtained from non negative matrix factorization are alternately updated using EM algorithm and direct method, effectively achieving accurate interpolation of data. Simulation analysis and experimental results have verified the effectiveness and accuracy of the algorithm.

    参考文献
    [1] 林成,宋伟杰,廖志戈,周雅怡.大数据背景下用户侧用电数据在电力系统的应用[J].科技创新与应用,2020(16):167-168.
    [2] 陈永淑.大数据技术在电力系统的应用[J].信息技术与信息化,2020,0(1):43-45
    [3] 马俊明,张珍芬.浅谈电力大数据在电网建设中的运用[J].中国新通信,2020,0(1):99-99
    [4] 彭小圣,邓迪元,程时杰等.面向智能电网应用的电力大数据关键技术[J].中国电机工程学报,2015,35(03):503-511.DOI:10.13334/j.0258-8013.pcsee.2015.03.001.
    [5] 王喜宾,文俊浩,廖臣等.智能电网需求侧个性化推荐系统[J].重庆大学学报,2022,45(01):38-49.
    [6] 邓东林,徐冘,陈剑等.智能用电数据的采集与预处理[J].电力大数据,2019,22(03):81-86.DOI:10.19317/j.cnki.1008-083x.2019.03.014.
    [7] 郑旭东.用电信息采集系统电能计量数据异常的原因浅析[J]科技创新导报中国宇航出版有限责任公司、北京合作创新国际科技服务中心,2019,16(23):81-81
    [8] Papageorgiou G, Bouboulis P, Theodoridis S. Robust linear regression analysis—a greedy approach[J]. IEEE Transactions on Signal Processing, 2015, 63(15): 3872-3887.
    [9] Papageorgiou G, Bouboulis P, Theodoridis S. Robust non-linear regression analysis: A greedy approach employing kernels[J]. Journal of Machine Learning Research, 2015, 1: 1-48.
    [10] M11ateos G, Giannakis G B. Robust nonparametric regression via sparsity control with application to load curve data cleansing[J]. IEEE Transactions on Signal Processing, 2011, 60(4): 1571-1584.
    [11] Suo Q, Yao L, Xun G, et al. Recurrent imputation for multivariate time series with missing values[C]//2019 IEEE international conference on healthcare informatics (ICHI). IEEE, 2019: 1-3.
    [12] Liu M, Liu D, Sun G, et al. Deep learning detection of inaccurate smart electricity meters: A case study[J]. IEEE Industrial Electronics Magazine, 2020, 14(4): 79-90.
    [13] de Andrade P H M, Villanueva J M M, de Macedo Braz H D. An outliers processing module based on artificial intelligence for substations metering system[J]. IEEE Transactions on Power Systems, 2020, 35(5): 3400-3409.
    [14] 袁忠军,陈刚.基于结构自适应神经网络用电量时间特征的聚类分析[J].重庆大学学报(自然科学版),2007(08):44-48.
    [15] 杨挺,孙兆帅,季浩,叶芷杉,耿毅男.基于矩阵范数优化理论的用电数据质量提升算法[J]中国电机工程学报中国科学院文献情报中心,2022,42(10):3501-3512
    [16] Guan N, Tao D, Luo Z, et al. NeNMF: An optimal gradient method for nonnegative matrix factorization[J]. IEEE Transactions on Signal Processing, 2012, 60(6): 2882-2898.
    [17] Dorffer C, Puigt M, Delmaire G, et al. Fast nonnegative matrix factorization and completion using Nesterov iterations[C]//Latent Variable Analysis and Signal Separation: 13th International Conference, LVA/ICA 2017, Grenoble, France, February 21-23, 2017, Proceedings 13. Springer International Publishing, 2017: 26-35.
    [18] Giampouras P V, Rontogiannis A A, Koutroumbas K D. Alternating iteratively reweighted least squares minimization for low-rank matrix factorization[J]. IEEE Transactions on Signal Processing, 2018, 67(2): 490-503.
    [19] Cabral R, De la Torre F, Costeira J P, et al. Unifying nuclear norm and bilinear factorization approaches for low-rank matrix decomposition[C]//Proceedings of the IEEE international conference on computer vision. 2013: 2488-2495.
    [20] Hastie T, Mazumder R, Lee J D, et al. Matrix completion and low-rank SVD via fast alternating least squares[J]. The Journal of Machine Learning Research, 2015, 16(1): 3367-3402.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:110
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-07-18
  • 最后修改日期:2023-12-12
  • 录用日期:2023-12-13
文章二维码