面向智能航道巡检的新型水面目标检测算法
作者单位:

1.兰州大学;2.重庆科技学院;3.上海交通大学

基金项目:

2021年重庆市级本科院校与中科院科研院所合作项目(HZ2021015);重庆市教委科学技术研究重点项目(KJZD-K202305201)


A Novel Water Surface Target Detection Algorithm for Intelligent Waterway Inspection
Author:
Affiliation:

1.Lanzhou University;2.Chongqing University of Science and Technology;3.Shanghai Jiao Tong University

Fund Project:

cooperation project between Chongqing Municipal undergraduate universities and institutes affiliated to the Chinese Academy of Sciences in 2021 by Grant with NO. HZ2021015; Key Project of Science and Technology Research of Chongqing Education Commission (KJZD-K202305201)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为解决多场景复杂内河背景下水面目标检测存在的环境噪声大、水面目标分布情况繁杂、特征微小模糊等问题,本文提出一种融合多尺度特征和注意力机制,增强类激活映射的水面目标检测算法,称作UltraWS水面目标检测算法。首先,在典型检测网络上设计空间注意力模块与多头策略,融合多尺度特征,提高对微小目标的检测能力。其次,本文提出UltraLU模块增强类激活映射,减小环境因素与分布因素对检测目标的影响。最后,设计对模型进行Tucker张量分解,实现模型的轻量化,增强模型的可解释性与推理速度。实验结果表明,所提出的UltraWS算法提高了对背景噪声的抗干扰能力,能够更好的捕捉微小目标,满足了边缘化部署的检测速度和准确率的均衡性需求。在WSODD数据集上,算法的mAP值取得了最高的84.5%,相较于其他主流方法存在可观的提升。基于提出的算法建立航道安全巡检体系与评估方法,有利于推动内河智慧航运的发展。

    Abstract:

    In order to address the challenges of environmental noise, complex distribution of water surface targets, and the blurring of small-scale features in water surface target detection under complex river backgrounds, this paper proposes an enhanced water surface target detection algorithm called UltraWS, which integrates multi-scale features and attention mechanisms. Firstly, a spatial attention module and multi-head strategy are designed on a typical detection network to fuse multi-scale features and improve the detection capability of small targets. Secondly, the UltraLU module is introduced to enhance class activation mapping and reduce the influence of environmental and distribution factors on target detection. Finally, a Tucker tensor decomposition method is applied to achieve model lightweighting, enhancing model interpretability and inference speed. Experimental results demonstrate that the proposed UltraWS algorithm improves the resistance to background noise, captures small targets better, and achieves a balance between detection speed and accuracy for edge deployment requirements. On the WSODD dataset, the algorithm achieves the highest mAP value of 84.5%, outperforming other mainstream methods by an considerable improvement. The proposed algorithm, along with the established channel safety inspection system and evaluation method, contributes to the development of intelligent river transportation.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-22
  • 最后修改日期:2023-09-18
  • 录用日期:2023-10-11
文章二维码