基于预瞄理论的带约束增广LQR算法设计
作者单位:

重庆大学

基金项目:

四川省科技计划资助(基金号:2023YFQ0026)


Research of the LQR algorithm with constraints based on preview control
Affiliation:

Chongqing University

Fund Project:

Supported by Science and Technology Program of Sichuan Province(2023YFQ0026)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了增强智能车的轨迹跟踪能力和稳定性,提出了基于预瞄理论和线性二次调节器(LQR)的横纵向控制策略。首先建立了车辆二自由度动力学模型和车-路误差动力学模型,其次基于预瞄控制理论,在LQR的状态向量增加未来的道路曲率这一扰动,并依据最优理论解析增广LQR问题,得到控制量的解析解,考虑智能车的动力学对最优控制进行约束,提高智能车对极限车况的适应性,最后采用模拟退火算法(simulated annealing algorithm,SAA)对预瞄时间进行优化求解,获取不同车速和道路摩擦系数下的最优预瞄时间。分析基于预瞄理论的带约束增广LQR算法构成的闭环控制系统的稳定性,验证算法的可行性。通过Carsim/Simulink联合平台对前述轨迹跟踪控制算法进行仿真验证,仿真结果表明:提出的基于预瞄理论的带约束增广LQR算法具有优秀的轨迹跟踪能力、稳定性和对车速的鲁棒性。

    Abstract:

    This study proposes a lateral and longitudinal control strategy for intelligent vehicles based on the preview control theory and linear quadratic regulator (LQR) to enhance the trajectory tracking ability and stability. The two-degree-of-freedom dynamic model of the vehicle and the road-vehicle error dynamic model is established, and the future road curvature is incorporated as a disturbance into the LQR state vector using the preview control theory. An augmented LQR problem is solved according to the optimal theory to obtain the analytical solution of the control quantity. This strategy also enhances the adaptive ability of the intelligent vehicle to extreme conditions by taking into account the dynamic constraints. The preview time is optimized using the simulated annealing algorithm to obtain the optimal preview time under different vehicle speeds and road friction coefficients. The stability of the closed-loop control system composed of the new algorithm is analyzed to verify its feasibility. Simulation results on the Carsim/Simulink joint platform demonstrate that it has excellent trajectory tracking ability, stability, and robustness to the vehicle speed. The proposed strategy has the potential to significantly advance the field of intelligent vehicle control and improve the safety and efficiency of transportation systems.

    参考文献
    [1] PetridouE., MoustakiM.. Human Factors in the Causation of Road Traffic Crashes[J]. European Journal of Epidemiology, 2000, 16(9): 819-826.
    [2] MoyanoA., StępniakM., Moya-GómezB., et al. Traffic Congestion and Economic Context: Changes of Spatiotemporal Patterns of Traffic Travel Times During Crisis and Post-Crisis Periods[J]. Transportation, 2021, 48(6): 3301-3324.
    [3] KaffashS., NguyenA.T., ZhuJ.. Big Data Algorithms and Applications in Intelligent Transportation System: A Review and Bibliometric Analysis[J]. International Journal of Production Economics, 2021, 231: 107868.
    [4] 吴忠泽, 贺宜. 充分利用智能交通技术提升道路交通安全水平[J]. 交通信息与安全, 2015, 33(1): 1-8.
    [5] HuangW., WeiY., GuoJ., et al. Next-generation innovation and development of intelligent transportation system in China[J]. Science China Information Sciences, 2017, 60(11): 62-72.
    [6] SkrickijV., ŠabanovičE., ŽuraulisV.. Autonomous road vehicles: recent issues and expectations[J]. IET Intelligent Transport Systems, 2020, 14(6): 471-479.
    [7] HuangC., NaghdyF., DuH., et al. Shared control of highly automated vehicles using steer-by-wire systems[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(2): 410-423.
    [8] KalaR., WarwickK.. Intelligent Transportation System with Diverse Semi-Autonomous Vehicles[J]. International Journal of Computational Intelligence Systems, 2015, 8(5): 886.
    [9] GordonT.J., LidbergM.. Automated driving and autonomous functions on road vehicles[J]. Vehicle System Dynamics, 2015, 53(7): 958-994.
    [10] GuoH., YinZ., CaoD., et al. A Review of Estimation for Vehicle Tire-Road Interactions Toward Automated Driving[J]. IEEE Transactions on System, Man, and Cybernetics: Systems, 2019, 49(1): 14-30.
    [11] Jin, Yin, Chen. Advanced Estimation Techniques for Vehicle System Dynamic State: A Survey[J]. Sensors, 2019, 19(19): 4289.
    [12] 单云霄. 城市无人驾驶规划与控制系统的关键技术研究[D]. 武汉: 武汉大学, 2018.
    [13] 熊璐, 杨兴, 卓桂荣, 等. 无人驾驶车辆的运动控制发展现状综述[J]. 机械工程学报, 2020, 56(10): 127-143.
    [14] HoffmannG.M., TomlinC.J., MontemerloM., et al. Autonomous Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental Validation and Racing[C]. 2007 American Control Conference, 2007: 2296-2301.
    [15] GuldnerJ., TanH., PatwardhanS.. Analysis of Automatic Steering Control for Highway Vehicles with Look-down Lateral Reference Systems[J]. Vehicle System Dynamics, 1996, 26(4): 243-269.
    [16] 拉贾马尼, 王国业, 江发潮, 等. 车辆动力学及控制[M]. 北京: 机械工业出版社, 2018.
    [17] LiuJ., JayakumarP., SteinJ.L., et al. A Study on Model Fidelity for Model Predictive Control-Based Obstacle Avoidance in High-Speed Autonomous Ground Vehicles[J]. Vehicle System Dynamics, 2016, 54(11): 1629-1650.
    [18] 修彩靖, 陈慧. 无人驾驶车路径跟踪控制研究[J]. 计算机工程, 2012, 38(10): 128-130.
    [19] 赵熙俊, 陈慧岩. 智能车辆路径跟踪横向控制方法的研究[J]. 汽车工程, 2011, 33(5): 382-387.
    [20] 赵盼. 城市环境下无人驾驶车辆运动控制方法的研究[D]. 合肥: 中国科学技术大学, 2012.
    [21] 龚建伟, 刘凯, 齐建永. 无人驾驶车辆模型预测控制[M]. 北京: 北京理工大学出版社, 2014.
    [22] YakubF., MoriY.. Comparative Study of Autonomous Path-Following Vehicle Control via Model Predictive Control and Linear Quadratic Control[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2015, 229(12): 1695-1714.
    [23] HeZ., NieL., YinZ., et al. A Two-Layer Controller for Lateral Path Tracking Control of Autonomous Vehicles[J]. Sensors, 2020, 20(13): 3689.
    [24] DoumiatiM., ChararaA., LechnerD., et al. Vehicle Dynamics Estimation using Kalman Filtering: Experimental Validation[M]. London: Wiley-ISTE, 2012.
    [25] LinC., UlsoyA.G., LeBlancD.J.. Vehicle dynamics and external disturbance estimation for vehicle path prediction[J]. IEEE Transactions on Control Systems Technology, 2000, 8(3): 508-518.
    [26] 储子昀. 极限工况下无人驾驶车辆路径跟踪控制算法研究[D]. 南京: 东南大学, 2020.
    [27] 李学鋆, 章菊, 陈小兵. 自动驾驶车辆转向系统设计[J]. 机械强度, 2019, 41(06): 1429-1435.
    [28] CetinA.E., AdliM.A., BarkanaD.E., et al. Implementation and Development of an Adaptive Steering-Control System[J]. IEEE Transactions on Vehicular Technology, 2010, 59(1): 75-83.
    [29] 赵林峰, 从光好, 邵文彬, 等. 线控转向车辆转向盘转矩特性研究[J]. 机械工程学报, 2018, 54(24): 138-146.
    [30] YihP.. Steer-by-wire: Implications for vehicle handling and safety[D]. Palo Alto: Stanford University, 2005.
    [31] 何祥坤. 自动驾驶汽车紧急避撞系统的运动控制与决策方法研究[D]. 北京: 清华大学, 2018
    [32] 莫灿军.基于神经网络PID及模糊预瞄理论的无人驾驶汽车轨迹跟随控制研究[D].长沙:长沙理工大学,2018.
    [33] 汪若尘,魏振东,叶青,等.视觉预瞄式智能车辆纵横向协同控制研究[J].汽车工程,2019,41(7):763-770,830
    [34] 谢辉,刘爽爽.基于模型预测控制的无人驾驶汽车横纵向运动控制[J].汽车安全与节能学报,2019,10(3):326-333
    [35] ATTIAR,ORJUELAR,BASSETM M.Combined longitudinal and lateral control for automated vehicle guidance[J]. Vehicle System Dynamics,2017,52(2):261-279
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:202
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-08-31
  • 最后修改日期:2024-01-05
  • 录用日期:2024-01-11
文章二维码