基于极点和残差的GaN-HEMT小信号等效电路建模
作者:
作者单位:

西南科技大学信息工程学院

中图分类号:

TN386???????

基金项目:

国家自然科学基金项目(69901003)


Modeling of GaN-HEMT small-signal equivalent circuits based on poles and residuals
Author:
Affiliation:

Southwest University of Science and Technology College of Information Engineering

Fund Project:

The National Natural Science Foundation of China (69901003)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    提出了一种基于极点和残差的GaN-HEMT小信号等效电路的建模方法。首先基于矢量拟合算法合理拟合器件整个宽带测量Y参数,建立了基于有理函数形式的GaN-HEMT准确小信号模型的极点和残差;然后根据不同的残差性质分类讨论了实现此残差的等效电路模型;最后利用极点和残差建立了2、3阶小信号等效电路模型,ADS软件仿真验证该模型具有更高的精确性,结果表明该模型S参数的平均相对误差低于1%,远远低于传统模型。有效解决了传统小信号等效电路模型在高频下误差较大的问题。所提出的小信号电路模型在本质上属于数学拟合模型的研究方法,具有高度鲁棒性,可应用于其他类似晶体管提高实用性。

    Abstract:

    A modeling method of GaN-HEMT small signal equivalent circuit based on poles and residuals is proposed. Firstly, the poles and residuals of the accurate GaN-HEMT small signal model based on rational function are established by using vector fitting algorithm to reasonably fit the whole wideband measurement Y parameter of the device. Then, according to the different residual properties, the equivalent circuit model to realize the residual is discussed. Finally, a second - and third-order small-signal equivalent circuit model is established using poles and residuals. ADS software simulation verifies that the model has higher accuracy. The results show that the average relative error of S-parameters of the model is less than 1%, which is much lower than the traditional model. The problem of large error of traditional small-signal equivalent circuit model at high frequency is solved effectively. The proposed small-signal circuit model belongs to the research method of mathematical fitting model in essence, which is highly robust and can be applied to other similar transistors to improve practicability.

    参考文献
    [1] 王林,王军,王丹丹.40纳米MOSFET毫米波等效电路的弱反区关键参数提取[J].四川大学学报(自然科学版),2017, 54(3): 523.
    [2] R. Sun, J. Lai, W. Chen, et al. GaN power inte gration for high frequency and high efficiency power applica tions: A review, IEEE Access, vol. 8, pp. 15529–15542, 2020, doi: 10.1109/ACCESS.2020.2967027.
    [3] S. Aamir Ahsan, S. Ghosh, S. Khandelwal, et al. Physics based multi-bias RF large-signal GaN HEMT modeling and parame ter extraction flflow, IEEE J. Electron Devices Soc., vol. 5, no. 5, pp. 310–319, Sep. 2017, doi: 10.1109/JEDS.2017.2724839.
    [4] Y. Wu, Q. Wang, J. Liu, et al. An improved small-signal equivalent circuit model considering channel current mag netic effect, IEEE Microw. Compon. Lett., vol. 28, no. 9, pp. 804–806, Sep. 2018, doi: 10.1109/LMWC.2018.2850895.
    [5] J. A. Z. Flores and G. Kompa, Closed-Form Extraction Strategy of Physically Meaningful Parameters of Small-Signal HEMT Models With Distributed Parasitic Capacitive Effects, IEEE Trans. Microw. Theory Techn., vol. 69, no. 2, pp. 1227-1237, Feb. 2021, doi: 10.1109/TMTT.2021.3042493.
    [6] A. R. Alt and C. R. Bolognesi, (InP) HEMT small-signal equivalent circuit extraction as a function of temperature, IEEE Trans. Microw. Theory Techn., vol. 63, no. 9, pp. 2751–2755, Sep. 2015, doi: 10.1109/ TMTT.2015.2448539.
    [7] Y. Karisan, C. Caglayan, G. C. Trichopoulos, et al. Lumped element equivalent-circuit modeling of millimeter-wave HEMT para sitics through full-wave electromagnetic analysis, IEEE Trans. Microw. Theory Techn., vol. 64, no. 5, pp. 1419–1430, May 2016, doi: 10.1109/ TMTT.2016.2549520.
    [8] G. Crupi, A. Raffo, G. Avolio, et al. Temperature influence on GaN HEMT equivalentcircuit, IEEE Microw. Compon. Lett., vol. 26, no. 10, pp. 813–815,Oct. 2016, doi: 10.1109/LMWC.2016.2601487.
    [9] F. Y. Huang, X. S. Tang, Z. N. Wei, et al. An improved small-signal equivalent circuit for GaN high-electron mobility transistors, IEEE Electron Device Lett., vol. 37, no. 11, pp. 1399–1402, Nov. 2016, doi:10.1109/LED.2016.2609462.
    [10] Y. Tang, L. Zhang, and Y. Wang, Accurate small signal modeling and extraction of silicon MOSFET for RF IC application,Solid-State Electron., vol. 54, no. 11, pp. 1312–1318, Nov. 2010,doi: 10.1016/j.sse.2010.06.025.
    [11] C. C. Chou and J. E. Schutt-Ainé, Acceleration of Vector Fitting by Reusing the Householder Reflectors in Multiple QR Factorization, 2022 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS), Urbana, IL, USA, 2022, pp. 1-3, doi: 10.1109/EDAPS56906.2022.9995103.
    [12] D. Deschrijver, M. Mrozowski, T. Dhaene, et al. Macromodeling of multiport systems using a fast implementation of the vector fitting method, IEEE Microw. Wireless Compon. Lett., vol. 18, no. 6,pp. 383–385, Jun. 2008, doi: 10.1109/LMWC.2008.922585.
    [13] 程旭瀚,王军.一种基于MLP-ELM的GaN HEMT小信号特性的建模方法[J/OL].四川大学学报(自然科学版),2023(04):134-142[2023-07-31].doi:10.19907/j.0490-6756.2023.044003.
    [14] Y. Tsividis and C. McAndrew, Operation and Modeling of the MOS Transistor. [M] Oxford University Press, 2021.
    [15] J. Luo, L. Zhang, and Y. Wang, A Distributed De-Embedding Solution for CMOS mm-Wave On-Wafer Measurements Based-on Double Open-Short Technique, IEEE Microw. Wirel. Compon. Lett., vol. 23, no. 12, pp. 686–688, Dec. 2013, doi: 10.1109/LMWC.2013.2284773.
    [16] 闻彰,徐跃杭,徐锐敏.氮化镓功率器件小信号模型参数提取算法研究[J].电波科学学报,2015,30(4):772
    [17] T. T.-L. Nguyen and S.-D. Kim, A gate-width scalable method of parasitic parameter determination for distributed HEMT small-signal equivalent circuit, IEEE Trans. Microw. Theory Techn., vol. 61, no. 10,pp. 3632–3638, Oct. 2013, doi: 10.1109/TMTT.2013.2279360
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:200
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-09-01
  • 最后修改日期:2024-04-04
  • 录用日期:2024-04-16
文章二维码