基于贝叶斯后验估计的LSTM-XGBoost组合模型供热负荷预测研究
作者:
作者单位:

华北电力大学 控制与计算机工程学院

基金项目:

国家自然科学基金项目(52206009)


Research on Heating Load Forecasting Based on the Bayesian Posterior Estimation of LSTM-XGBoost Combination Model
Author:
Affiliation:

North China Electric Power University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    提升区域供热系统(District Heating Systems, DHS)的供热负荷预测精度是实现智慧供热、提升能源利用效率的重要手段。本文提出了一种基于贝叶斯后验估计,长短期记忆(Long Short Term Memory, LSTM)算法和极端梯度提升(eXtreme Gradient Boosting , XGBoost)算法的供热负荷预测组合模型。首先根据供热负荷变化的特性,确定输入的特征值,构建LSTM模型和XGBoost模型,再采用贝叶斯后验估计算法进行融合,构造出一个LSTM-XGBoost组合模型。采用石家庄某供热站2019-2020年供暖季运行数据进行仿真验证,仿真结果的评价指标表明,本文提出的基于贝叶斯后验估计的LSTM-XGBoost组合模型的平均绝对百分比误差 (Mean Absolute Percentage Error, MAPE)为0.51%,即负荷预测平均偏差为0.51%。将本文所提方法与循环神经网络(Recurrent Neural Network, RNN)模型和门循环单元(Gate Recurrent Unit, GRU)模型进行比较,验证了本文所提出的方法能有效提高供热负荷预测精度。

    Abstract:

    Improving the forecasting accuracy of heating load of district heating system (DHS) is an important method to realize intelligent heating and improve energy utilization efficiency. This paper proposes a combination heating load forecasting model based on Bayesian posterior estimation, Long Short Term Memory (LSTM) algorithm and eXtreme Gradient Boosting (XGBoost) algorithm. Initially, we confirm the input features based on the characteristics of heating load changes to construct the LSTM model and the XGBoost model respectively. Then, the Bayesian posterior estimation algorithm combined them to construct the LSTM-XGBoost combination model. The operating data of a heating station in Shijiazhuang from 2019 to 2020 was used for simulation validation, and the evaluation indicators of its results indicate that the Mean Absolute Percentage Error (MAPE) of the LSTM-XGBoost combination model based on Bayesian posterior estimation proposed is about 0.51%, which means the average deviation of heating load forecasting is about 0.51%. Comparing the proposed method with Recurrent Neural Network (RNN) model and Gate Recurrent Unit (GRU) model, and the result verified that the proposed method can effectively improve the accuracy of heating load forecasting.

    参考文献
    [1] Rezaie B, Rosen M A. District heating and cooling: review of technology and potential enhancements[J]. Applied Energy, 2012, 93:2-10.
    [2] 潘志洋. 探讨大数据时代机器学习的应用及发展[J]. 电子元器件与信息技术, 2022, 6(04):66-69.
    [3] Pan Z Y. Exploring the Application and Development of Machine Learning in the Age of Big Data[J]. Electronic Components and Information Technology, 2022, 6(04):66-69.
    [4] [3] 韩富佳, 王晓辉, 乔骥等.基于人工智能技术的新型电力系统负荷预测研究综述[J/OL].中国电机工程学报. 2023:1-24.
    [5] Han F, Wang X, Qiao Y, et al. Review on Artificial Intelligence based Load Forecasting Research for the New-type Power System[J/OL]. Proceedings of the CSEE. 2023:1-24.
    [6] [4] Chakhchoukh Y, Panciatici P, Mili L. Electric load forecasting based on statis-tical robust methods[J]. IEEE Trans Power Syst, 2011, 26(03):982-991.
    [7] [5] 蒋敏, 顾东健, 孔军等. 基于在线序列极限支持向量回归的短期负荷预测模型[J]. 电网技术, 2018, 42(07):2240-2247.
    [8] Jiang M, Gu D J, Kong J, et al. A short-term load forecasting model based on online sequence limit support vector regression [J]. Power Grid Technology, 2018, 42(07):2240-2247.
    [9] [6] Ma W. Power system short-term load forecasting based on improved support vector machines[C]// Wuhan, China: 2008 International Symposium on Knowledge Acquisition and Modeling, 2008.
    [10] [7] Lahouar A, Ben H S J. Day-ahead load forecast using random forest and expert input selection[J]. Energy Conversion and Management, 2015, 103:1040-1051.
    [11] [8] Kurek T, Bielecki A, Swirski K, et al. Heat demand forecasting algorithm for a Warsaw district heating network[J]. Energy, 2021, 217:119347.
    [12] [9] 方娜, 李俊晓, 陈浩等. 基于变分模态分解的卷积神经网络-双向门控循环单元-多元线性回归多频组合短期电力负荷预测现代电力[J]. 2022; 39(04): 441-448.
    [13] Fang N, Li X, Chen H, et al. Multi-Frequency Combination Short-term Power Load Forecasting with Convolutional Neural Networks - Bidirectional Gated Recurrent Unit-Multiple Linear Regression based on Variational Mode Decomposition[J]. Modern Electric Power. 2022; 39(04): 441-448.
    [14] [10] ShyhJier H, KuangRong S. Short-term load forecasting via ARMA model identification including non-Gaussian process considerations[J]. IEEE Trans Power Syst, 2003, 18(02):673-679.
    [15] [11] Al-Shammari E T, Keivani A, Shamshirband S, et al. Prediction of heat load in district heating systems by Support Vector Machine with Firefly searching algorithm[J]. Energy, 2016, 95:266-273.
    [16] [12] Zhou Y, Liu Y F, Wang D J, et al. Comparison of machine-learning models for predicting short-term building heating load using operational parameters[J]. Energy and Buildings, 2021, 253:111505.
    [17] [13] Liu J, Wang X, Zhao Y, et al. Heating load forecasting for combined heat and power plants via strand-based LSTM[J]. IEEE Access, 2020, 8:33360-33369.
    [18] [14] Yan L, Liu M. A simplified prediction model for energy use of air conditioner in residential buildings based on monitoring data from the cloud platform[J]. Sustainable Cities Soc, 2020, 60:102194.
    [19] [15] 段晶晶. 基于神经网络的短期电力负荷组合预测方法研究[D]. 兰州大学, 2017.
    [20] Duan J. Research on short-term power load combination forecasting method based on neural network[D]. Lanzhou University, 2017.
    [21] [16] 陈鸿琳, 李欣然, 冷华等. 运用PSO和GRNN的短期负荷二维组合预测[J]. 电力系统及其自动化学报, 2018, 30(02):85-89.
    [22] Chen H, Li X, Leng H, et al. Bidirectional combined short-term load forecasting by using PSO and GRNN[J]. Proceedings of the CSU-EPSA, 2018, 30(02):85-89.
    [23] [17] 杨凯. 基于CNN和双向GRU组合模型的短期电力负荷预测研究[D].东北石油大学,2023.
    [24] Yang K. Research on Short-term Power Load Forecasting Based on CNN and BiGRU Combination Model[D]. Northeast Petroleum University,2023.
    [25] [18] 陈晓红,王辉,李喜华.基于KPCA-CNN-DBiGRU模型的短期负荷预测方法[J/OL].管理工程学报. 2023:1-11.
    [26] Chen X H, Wang H, Li X H. A short-term load forecasting method based on KPCA-CNN-DBiGRU model[J/OL]. Journal of management engineering. 2023:1-11.
    [27] [19] 张佼. 基于神经网络和支持向量机及其改进算法的供热负荷预测研究[D]. 太原理工大学, 2015.
    [28] Zhang J. Research on heating load forecasting based on neural networks, support vector machines and improved algorithms[D]. Taiyuan University of Technology, 2015.
    [29] [20] 吴玉利. 热力站短期供热负荷预测研究及分析[D].北京建筑大学,2023.
    [30] Wu Y L. Research and analysis on short-term heating load prediction of thermal power station[D]. Beijing University of Civil Engineering and Architecture,2023.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:178
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-09-22
  • 最后修改日期:2023-10-26
  • 录用日期:2023-10-27
文章二维码