光伏虚拟同步发电机经高压直流输电送出系统稳定性研究
作者:
作者单位:

1.兰州交通大学 自动化与电气工程学院;2.平顶山姚孟发电有限责任公司


Analysis of Subsynchronous Oscillation Characteristics of Photovoltaic VirtualSynchronous Generators Integrated with MMC-HVDC
Author:
Affiliation:

1.School of Automation Electrical Engineering,Lanzhou Jiaotong University;2.Pingdingshan Yao Meng Power Generation Co,Ltd,Pingdingshan

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对光伏虚拟同步发电机(virtual synchronous generators, VSG)经高压直流输电(Modular Multilevel Converter based high voltage direct current, MMC-HVDC)送出系统所存在的次同步振荡(subsynchronous oscillation, SSO)风险,建立系统线性化数学模型。本文提出一种改进型虚拟同步控制策略,利用特征值法分析当功率发生扰动时,光伏虚拟同步发电系统有功控制环节、无功控制环节、虚拟电感、MMC-HVDC桥臂电感、电流矢量控制环节对系统SSO的阻尼特性和频率特性均会产生影响,并在PSCAD/EMTDC仿真平台进行验证。结果表明,引入VSG控制后,在外送系统中发生功率扰动的过程中,存在光伏VSG和MMC-HVDC共同参与的次同步振荡模式;在光伏VSG侧,有功调频系数Kf过大或虚拟电感Lv过小均会导致系统失稳;MMC-HVDC侧,电压环积分系数Ki4增大会导致系统失稳,而增大桥臂电感Lg会增强系统稳定性。

    Abstract:

    Aiming at the problem of subsynchronous oscillation(SSO) when Photovoltaic virtual synchronous generators (VSG_PV) are sent out of the system through modular multi-level converter based on high voltage direct current (MMC-HVDC), a linearized mathematical model of the system is established. This paper proposes an improved virtual synchronous control strategy. The eigenvalue method is used to analyze that when the power is disturbed, the active control link, reactive control link, virtual inductance, MMC-HVDC bridge arm inductance, and current vector control link of the photovoltaic virtual synchronous power generation system will all affect the damping characteristics and frequency characteristics of the system SSO, and it is verified on the PSCAD/EMTDC simulation platform. The results show that, with the introduction of VSG function, there is a sub-synchronous oscillation mode in which photovoltaic VSG and MMC-HVDC participate in the process of power disturbance in the outgoing system. On the photovoltaic VSG side, the active frequency modulation coefficient Kf is too large or the virtual inductance Lv is too small, which will lead to system instability; On the MMC-HVDC side, the increase of voltage loop integral coefficient Ki4 will lead to system instability, while the increase of bridge arm inductance Lg will enhance system stability.

    参考文献
    [1] 王新令.积极应对气候变化,推动清洁低碳转型—《2030年前碳达峰行动方案》解读[J].中国电业,2021(12):22-25.Wang Xinling. Actively Respond to Climate Change and Promote Clean and Low-carbon Transformation-Interpretation of peak carbon dioxide emissions Action Plan to 2030[J]. China Electric Power,2021(12):22-25.
    [2] 董晓亮,田旭,张勇,宋佳.沽源风电场串补输电系统次同步谐振典型事件及影响因素分析[J].高电压技术,2017,43(01):321-328.Dong Xiaoliang, Tian Xu ,Zhang Yong, et al. Practical SSR Incidence and Influencing Factor Analysis of DFIG-based Series-compensated Transmission System in Guyuan Farms[J]. High Voltage Engineering,2017,43(01):321-328.
    [3] 王亮,谢小荣,姜齐荣,刘辉,董晓亮,李雨.大规模双馈风电场次同步谐振的分析与抑制[J].电力系统自动化,2014,38(22):26-31.Wang Liang, Xie Xiaorong, Jiang Qirong, et al. Analysis and Mitigation of SSR Problems in Large-scale Wind Farms with Doubly-fed Wind Turbines[J]. Automation of Electric Power Systems,2014,38(22):26-31.
    [4] 董晓亮,谢小荣,刘辉,李雨,韩英铎.双馈风力发电机串补输电系统全运行区域的次同步特性分析[J].电网技术,2014,38(09):2429-2433.Dong Xiaoliang, Xie Xiaorong, Liu Hui, et al. SSR Characteristics of a Wind Farm Connected to Series-Compensated Transmission System under All Operation Region of DFIG[J]. Power System Technology, 2014,38(09):2429-2433.
    [5] 顾志明. 大规模风电场接入对火电机组次同步振荡阻尼特性影响研究[D].华北电力大学(北京),2021.Gu Zhiming. Study on the Influence of Large-Scale Wind Farms Connected to the Grid on the Damping Charateristics of the Subsynchronous Oscillation of Thermal Power Unit[D]. North China Electric Power University (Beijing),2021.
    [6] Sun Jian. Impedance-based stability criterion for grid-connected inverters[J]. IEEE Transactions on Power Electronics, 2011, 26(11):3075-3078.
    [7] 吕敬,蔡旭,张占奎,迟永宁.海上风电场经MMC-HVDC并网的阻抗建模及稳定性分析[J].中国电机工程学报,2016,36(14):3771-3781.Lv Jing, Cai Xu, Zhang Zhankui, et al. Impedance Modeling and Stability Analysis of MMC-based HVDC for Offshore Wind Farms[J]. Proceedings of the CSEE ,2016, 36(14):3771-3781.
    [8] 董晓亮,谢小荣,杨煜,韩英铎.双馈风机串补输电系统次同步谐振影响因素及稳定区域分析[J].电网技术,2015,39(01):189-193.Dong Xiaoliang, Xie Xiaorong, Yang Yu, et al. Impacting Factors and Stable Area Analysis of Subsynchronous Resonance in DFIG Based Wind Farms Connected to Series-Compensated Power System [J]. Power System Technology ,2015, 39(01): 189-193.
    [9] 邵冰冰,赵峥,肖琪等.多直驱风机经柔直并网系统相近次同步振荡模式参与因子的弱鲁棒性分析[J].电工技术学报,2023,38(03):754-769.DShao Bingbing, Zhao Zheng, Xiao Qi, et al. Weak Robustness Analysis of Close Subsynchronous Oscillation Modes’ Participation Factors in Multiple Direct-Drive Wind Turbines[J]. Transactions of China Electrotechnixal Society ,2023 ,38(03): 754-769.
    [10] José M ,Marc C ,Eduardo P , et al. Small-signal analysis of a fast central control for large scale PV power plants[J]. International Journal of Electrical Power and Energy Systems,2022,141.
    [11] 苗淼,李兴源,王曦.大型并网风电场、光伏电站与直流系统交互影响分析[J].太阳能学报,2015,36(04):878-885.Miao Miao, Li Xingyuan, XiWng. Analysis on Interaction Affect of Large Scale Grid-connected Wind Farm, PV Plant and HVDC Systems[J]. Acta Energiae Solaris Sinica,2015,36(04):878-885.
    [12] 赵书强,李忍,高本锋等.光伏并入弱交流电网次同步振荡机理与特性分析[J].中国电机工程学报,2018,38(24):7215-7225+7448.Zhao Shuqiang, Li Ren, Gao Benfeng, et al. Analysis of Mechanism and Characteristics in Sub Synchronous Oscillation Between PV and Weak AC Networks [J].Proceedings of the CSEE, 2018, 38(24):7215-7225+7448.
    [13] Li ,Chengyu ,Xu , et al. A Coherency-Based Equivalence Method for MMC Inverters Using Virtual Synchronous Generator Control[J]. IEEE Transactions on Power Delivery,2016,31(3).
    [14] B H B A , B T I , B Y M .Virtual synchronous generators: A survey and new perspectives[J]. 2014.
    [15] 郭贤珊,李云丰,谢欣涛等.直驱风电场经柔直并网诱发的次同步振荡特性[J].中国电机工程学报,2020,40(04):1149-1160+1407.Guo Xianshan, Li Yunfeng, Xie Xintao, et al. Sub-synchronous Oscillation Characteristics Caused by PMSG-based Wind Plant Farm Integrated via Flexible HVDC System [J]. Proceedings of the CSEE,2020,40(04):1149-1160+1407.
    [16] 彭意. MMC系统的高频振荡机理及抑制方法研究[D].华北电力大学(北京),2023.Peng Yi. Research on High-frequency Oscillation Mechanism and Suppression Approach of MMC System[D]. North China Electric Power University (Beijing), 2023.
    [17] 周昕怡,成庶,伍珣等.一种基于VSG控制的光伏电站对多机系统的低频振荡自适应控制策略[J].中南大学学报(自然科学版),2022,53(08):2920-2931.Zhou Xinyi, Chen Shu, Wu Xun, et al. An adaptive low frequency oscillation control strategy of VSG based photovoltaic power plants to multi-machine power systems[J]. Journal of Central South University(Science and Technology), 2022, 53(08): 2920-2931.
    [18] Jing G E , Hongji D U , Dawei Z ,et al.Influences of Grid-connected Photovoltaic Power Plants on Low Frequency Oscillation of Multi-machine Power Systems[J].Automation of Electric Power Systems, 2016.
    [19] 程时杰,曹一家,江全元.电力系统次同步振荡的理论与方法[M].科学出版社,2009.Cheng Shijie, Cao Yijia, Jiang Quanyuan. Electricity Power System's Theory and Method [M]. Science Press, 2009.
    [20] 赵崇滨,姜齐荣,冯海全等.基于MMC的背靠背异步联网系统宽频带频率耦合阻抗模型及小信号稳定性分析[J].中国电机工程学报,2023,43(10):3691-3705.Zhao Chongbin, Jiang Qirong, Feng Haiquan, et al. Frequency-coupling Impedance Model and Small-signal Stability Analysis of the MMC-based Back-to-back Asynchronous Grid Interconnection System[J]. Proceedings of the CSEE, 2023, 43(10):3691-3705.
    [21] Zeni L. Power Oscillation Damping from VSC‐HVDC‐connected Offshore Wind Power Plants[J]. Modeling and Modern Control of Wind Power, 2018: 233-256.
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-28
  • 最后修改日期:2024-04-03
  • 录用日期:2024-04-03
文章二维码