抑制碳化硅MOSFET阈值电压漂移的驱动电路
作者:
作者单位:

重庆大学 输变电装备技术全国重点实验室

中图分类号:

TN 386


Driving circuit for suppressing threshold voltage drift in silicon carbide MOSFETs
Author:
Affiliation:

State Key Laboratory of Power Transmission Equipment Technology,Chongqing University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    碳化硅金属-氧化物-半导体场效应晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET)的阈值电压漂移严重影响了其在应用中的可靠性。针对该问题,文中总结了碳化硅MOSFET阈值电压漂移的特点与现有的理论模型,并以此为基础提出抑制阈值电压漂移的驱动方法与驱动电路。该驱动电路通过引入中间电平的方式,将被控器件关断动态过程与关断稳态后的栅极电压区分开来,以此来达到降低碳化硅MOSFET的阈值电压漂移量的目的,同时还可以保留负栅极关断电压的优势。搭建了实验平台来验证该驱动电路对碳化硅MOSFET阈值电压漂移的抑制效果,结果表明,在文中的实验条件下该驱动电路相比于传统的驱动方式阈值电压漂移量降低了37%。

    Abstract:

    The threshold voltage drift of silicon carbide metal-oxide-semiconductor field-effect transistors (MOSFETs) significantly affects their reliability in applications. In response to this issue, the article summarizes the characteristics of threshold voltage drift in silicon carbide MOSFETs and existing theoretical models. On this basis, it proposes a driving method and circuit to suppress threshold voltage drift. The circuit distinguishes the controlled device's turn-off dynamic process from the gate voltage after turn-off, aiming to reduce the threshold voltage drift in silicon carbide MOSFETs by introducing an intermediate voltage level. Additionally, it preserves the advantage of negative gate turn-off voltage. An experimental platform was constructed to validate this driving circuit's effectiveness in suppressing threshold voltage drift in silicon carbide MOSFETs. Results indicate that under the experimental conditions described in the article, this driving circuit reduces threshold voltage drift by 37% compared to traditional driving methods.

    参考文献
    [1] Zhang Q J, Wang G, Doan H, et al. Latest results on 1200 V 4H-SiC CIMOSFETs with Rsp, on of 3.9 mΩ.cm2 at 150°C[C]// 2015 IEEE 27th International Symposium on Power Semiconductor Devices IC''s (ISPSD), May 10-14, 2015, Hong Kong, China. IEEE, 2015: 89-92.
    [2] 白志强. 4H-SiC功率MOSFETs的可靠性研究[D]. 陕西西安:西安电子科技大学,2022.Bai Z Q. Reliability study of 4H-SiC power MOSFETs[D]. Xian, Shanxi: Xidian University,2022. (in Chinese)
    [3] 江希. 碳化硅MOSFET坚固性与可靠性研究[D].湖南长沙:湖南大学,2022.Jiang X. Study on the durability and reliability of silicon carbide MOSFETs[D]. Changsha, Hunan: Hunan University,2022. (in Chinese)
    [4] Hazra S, Madhusoodhanan S, Moghaddam G K, et al. Design considerations and performance evaluation of 1200-V 100-A SiC MOSFET-based two-level voltage source converter[J]. IEEE Transactions on Industry Applications, 2016, 52(5): 4257-4268.
    [5] Hazra S, De A, Cheng L, et al. High switching performance of 1700-V, 50-A SiC power MOSFET over Si IGBT/BiMOSFET for advanced power conversion applications[J]. IEEE Transactions on Power Electronics, 2016, 31(7):4742-4754.
    [6] Zhao B, Song Q, and W. Liu. A practical solution of high-frequency-link bidirectional solid-state transformer based on advanced components in hybrid microgrid[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4587-4597.
    [7] Aichinger T, Rescher G, Pobegen G. Threshold voltage peculiarities and bias temperature instabilities of SiCMOSFETs[J]. Microelectron. Rel., 2018, 80: 68–78.
    [8] Asllani B, Castellazzi A, Salvado O A, et al. VTH-hysteresis and interface states characterisation in SiC power MOSFETs with planar and trench gate[C]// 2019 IEEE International Reliability Physics Symposium (IRPS), March 31- April 04, 2019, Monterey, CA, USA. IEEE, 2019: 1-6.
    [9] Ang D S, Wang S, Du G A, et al. A consistent deep-level hole trapping model for negative bias temperature instability[J]. IEEE Transactions on Device and Materials Reliability, 2008, 8(1): 22-34.
    [10] Zhou W, Zhong X, Sheng K. High temperature stability and the performance degradation of SiC MOSFETs[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2329-2337.
    [11] Jiang H, Zhong X, Qiu G, et al. Dynamic gate stress induced threshold voltage drift of silicon carbide MOSFET[J]. IEEE Electron Device Letters, 2020, 41(9): 1284-1287.
    [12] Zhong X, Jiang H, Qiu G, et al. Bias temperature instability of silicon carbide power MOSFET under AC gate stresses[J]. IEEE Transactions on Power Electronics, 2021, 37(2): 1998-2008.
    [13] Zhang Z, Wang F, Tolbert L M, et al. Active gate driver for fast switching and cross-talk suppression of SiC devices in a phase-leg configuration[C]// 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), March 15-19, 2015, Charlotte, NC, USA. IEEE, 2015: 774-781.
    [14] Liu C, Zhang Z, Liu Y, et al. Smart self-driving multilevel gate driver for fast switching and crosstalk suppression of SiC MOSFETs[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 442-453.
    [15] Jiang H, Qi X, Qiu G, et al. A physical explanation of threshold voltage drift of SiC MOSFET induced by gate switching[J]. IEEE Transactions on Power Electronics, 2022, 37(8): 8830-8834.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:177
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-10-08
  • 最后修改日期:2023-12-11
  • 录用日期:2023-12-13
文章二维码