基于STC-HOSMO的外骨骼柔性膝关节控制方法研究
作者单位:

1.重庆文理学院;2.重庆理工大学

中图分类号:

TP24;TP273;TH48;TH13????

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目),重庆市英才计划项目


Research on flexible exoskeleton knee joint control method based on STC-HOSMO
Author:
Affiliation:

1.Chongqing University of Arts and Science;2.Chongqing University of Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对传统气动肌肉膝关节的迟滞性和有界扰动现象,构建了外骨骼气动肌肉柔性膝关节的动力学方程,提出一种基于超扭曲控制算法的高阶滑模控制器(A Higher Order Sliding Mode Observer based Sliding Mode Control, STC-HOSMO)。该算法通过柔性膝关节与气动人工肌肉动力学参数的映射,从而实现对柔性膝关节的运动控制。为验证该算法的可行性,搭建了Matlab-Simulink仿真模型和柔性膝关节的实验平台,仿真计算与试验数据表明,所设计的STC-HOSMO控制器能够控制关节在大运动范围下有较高的运动精确度和鲁棒性,并可以有效地抑制传统气动人工肌肉机器人关节极易出现较大的抖振、迟滞和有界扰动现象,表现出较高的柔顺性,为柔性膝关节在外骨骼研发设计中的应用开发提供了理论基础与试验数据。

    Abstract:

    Aiming at the retardation and bounded perturbation phenomenon of traditional pneumatic muscle knee joint, the dynamic equation of flexible knee joint of exoskeleton pneumatic muscle is constructed, and a Higher Order Sliding Mode Observer based Sliding Mode Control (STC-HOSMO) based on super-twist control algorithm is proposed. The algorithm realizes the motion control of the flexible knee joint by mapping the dynamic parameters of the flexible knee joint and the pneumatic artificial muscle. In order to verify the feasibility of the algorithm, a Matlab-Simulink simulation model and an experimental platform for flexible knee joint were built, and the simulation calculation and test data showed that the designed STC-HOSMO controller can control the joint with high motion accuracy and robustness under a large range of motion, and can effectively inhibit the traditional pneumatic artificial muscle robot joints that are prone to large jitter, hysteresis and bounded disturbances, showing high compliance. This paper provides a theoretical basis and experimental data for the application and development of flexible knee joint in exoskeleton R&D and design.

    参考文献
    [1] 戴宗妙,都军民. 外骨骼机器人研究现状及面临的问题[J]. 现代制造工程,2019,(03):154-161+16.ai Zongmiao,Du Junmin. Research status and facing problem of exoskeleton robot[J]. Modern Manufacturing Engineering, 2019,(03):154-161+16.
    [2] 谢胜龙,刘海涛,梅江平.气动人工肌肉迟滞-蠕变特性研究现状与进展[J].系统仿真学报,2018,30(03):809-823.ie Shenglong, Liu Haitao, Mei Jiangping. Achievements and Developments of Hysteresis and Creep? of? Pneumatic Artificial Muscles[J]. Journal of System Simulation, 2018,30(03):809-823.
    [3] Jingui Cao, Quanxue Sheng, Das R. MIMO Sliding Mode Controller for Gait Exoskeleton Driven by Pneumatic Muscles[J]. IEEE Transactions on Control Systems Technology, 2018, 26(1): 274-281.
    [4] Rashad Muhammad;Raoof Uzair;Siddique Nazam;Ahmed Bilal Ashfaq. Equivalent Sliding Mode Controller for Stability of DC MicrogridJournal[J] Engineering Proceedings. Volume 12 , Issue 1 . 2021. PP 23-23.
    [5] Zou J, Feng M, Ding N, et al. Muscle-fiber array inspired, multiple-mode, pneumatic artificial muscles through planar design and one-step rolling fabrication[J].National Science Review,2021,8(10):68-78.
    [6] XiuZe X ,Long C .Adaptive Takagi-Sugeno fuzzy model and model predictive control of pneumatic artificial muscles[J].Science China(Technological Sciences),2021,64(10):2272-2280.
    [7] Cao Y ,Huang J .Neural-Network-Based Nonlinear Model Predictive Tracking Control of a Pneumatic Muscle Actuator-Driven Exoskeleton[J].IEEE/CAA Journal of Automatica Sinica,2020,7(06):1478-1488.
    [8] Cao Yu;Fu Zhongzheng;Zhang Mengshi;Huang Jian. Extended-State-Observer-Based Super Twisting Control for Pneumatic Muscle Actuators Journal[J] Actuators. Volume 10 , Issue 2 . 2021. PP 35-35.
    [9] 马惠雯,杨帆,孙晓晋.基于扩张状态观测器的机械臂滑模控制[J].天津城建大学学报,2022,28(06):455-459.A Huiwen, YANG Fan, SUN Xiaojin. Sliding Mode Control of Manipulator Based on Extended State Observer[J]. Journal of Tianjin Chengjian University,2022,28(06):455-459.
    [10] 刘碧飞,刘泓滨,李华文.全向移动机器人自适应滑模轨迹跟踪控制[J].农业装备与车辆工程,2020,58(12):65-69+84.iu Bifei, Liu Hongbin, Li Huawen. Adaptive Sliding? Mode Trajectory Tracking Control for Omnidirectional Mobile Robot[J]. Agricultural Equipment Vehicle Engineering,2020,58(12):65-69+84.
    [11] Sheikh Sofla Mohammad;Sadigh Mohammad Jafar;Zareinejad Mohammad. Precise dynamic modeling of pneumatic muscle actuators with modified Bouw–Wen hysteresis model Journal[J] Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. Volume 235 , Issue 5 .2021. PP 1449-1457 .
    [12] Pietrala Dawid Sebastian;Laski Pawel Andrzej. Design and Control of a Pneumatic Muscle Servo Drive Containing Its Own Pneumatic Muscles Journal[J] Applied Sciences. Volume 12 , Issue 21 . 2022. PP 11024-11024.
    [13] 隋立明,王祖温,包钢.气动肌肉结构参数的分析与设计[J].液压与气动,2003(10):12-14.ui Li-ming,Wang Zu-wen,Bao Gang. Analysis and Design of the Structure Parameters of the Pneumatic Muscle[J].Chinese Hydraulics and Pneumatics, 2003(10):12-14.
    [14] 于海涛,郭伟,谭宏伟,李满天,蔡鹤皋.基于气动肌腱驱动的拮抗式仿生关节设计与控制[J].机械工程学报,2012,48(17):1-9.U Haitao,GUO Wei,TAN Hongwei,LI Mantian,CAI Hegao. Design and Control on Antagonistic Bionic Joint Driven by Pneumatic Muscles Actuators[J].Joural Of Mechanical Engineering, 2012,48(17):1-9.
    [15] 刘建. 非线性伺服系统的参数辨识与自适应滑模控制[D].青岛理工大学,2020.iu Jian. Parameter Identification and Adaptive Synovial Control of Nonlinear Servo System [D]. Qingdao University of Technology,2020.
    [16] A.Levant,“Robust exact differentiation via sliding mode technique”,Automatica.vol. 34, no. 3 pp. 379–384, 1998.
    [17] A. Levant, “Sliding order and sliding accuracy in sliding mode control,”Int. J. Control, vol. 58, no. 6, pp. 1247–1263, 1993.
    [18] Hamon Pol;Michel Lo?c;Plestan Franck;Chablat?? Damien. Control of a gripper finger actuated by a pneumatic muscle: new schemes based on a model-free approach Journal[J] IFAC PapersOnLine. Volume 55 , Issue 27 . 2022. PP 25-30.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:120
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-10-16
  • 最后修改日期:2023-11-13
  • 录用日期:2023-12-05
文章二维码