一种基于天基测控的安控终端算法设计
作者:
作者单位:

中国西南电子研究所

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目),十三五装备预先研究项目 41418060203


Algorithm design for Safety Control Terminal in Space-based TT&C system
Author:
Affiliation:

1. Southwest China Institute of Electronic Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | | | |
  • 文章评论
    摘要:

    基于天基测控模式的扩频安控终端采用传统捕获同步算法,安控处理时延长,无法满足安控实时性要求,高可靠性、快速响应同步算法的构建是扩频安控终端的关键技术。扩频安控终端同步算法,首先采用基于惯性导航+卫星导航信息辅助的部分匹配滤波与分段平均FFT谱估计结合的二维捕获算法,将惯性导航+卫星导航上报的运动状态信息转化为多普勒频偏与多普勒频偏变化率的估计值,有效缩小了多普勒频偏范围,缩短了捕获时间,分段平均FFT谱估计降低了功率谱估计的方差。载波跟踪环采用二阶锁频环辅助三阶锁相环,实现了高机动、大范围跟踪。在此基础上,载波跟踪环、伪码跟踪环增加了防假锁判决机制,可快速跳出假锁状态。工程应用表明:采用所提算法,扩频安控终端的安控处理时延不大于500ms,满足实时性要求。

    Abstract:

    The traditional acquisition synchronization algorithm for spread spectrum security terminal had some shortcomings. This approach prolonged the security control processing time and failed to meet real-time requirements. The development of a high reliability and fast response synchronization algorithm is a key technology for the space-based TT&C receiver. To address this, a two-dimensional acquisition algorithm is employed, which is based on partial matched filtering assisted by inertial navigation + satellite navigation information and piecewise average FFT spectrum estimation. This conversion effectively reduces the Doppler frequency offset range and shortens the acquisition time. Additionally, the piecewise averaging FFT spectrum estimation decreases the variance of power spectrum estimation. Furthermore, a second-order frequency-locked loop assisted by a third-order phase-locked loop is used in the carrier tracking loop to achieve high maneuverability and wide range tracking. An anti-false lock decision mechanism has been added to both the carrier tracking loop and pseudo code tracking loop to quickly escape from false lock states. Engineering applications have demonstrated that the use of this proposed algorithm results in a safety control processing delay of no more than 500 ms for the spread spectrum safety control terminal, thus meeting the real-time requirements.

    参考文献
    [1] 李琪,宁金枝,杜海龙,等. 一种遥测外测安控一体化火箭天基测控系统设计[J].航天器工程,2021,12: 82-88. Li Q, Ning J Z, Du H L, et al. A Design of Space-based Integrated System of Telemetry Track and Command for Launch Vehicles[J]. Spacecraft Engineering,2021,12:82-88.(in Chinese)
    [2] Wang Y, Luo R J, Gu X Q, et al. Research on the Reconfiguration Method of Space-Based Exploration Satellite Constellations for Moving Target Tracking at Sea [J]. Applied Sciences, 2023, 13 (18).
    [3] 李于衡,孙海忠,王旭康.近地卫星天基测控现状研究[J].无线电工程,2020,50(1): 1-9. Li Y H, Sun H Z, Wang X K. Research on Space-based TT&C Service for LEO Satellites [J]. Radio Engineering,2020,50 (1) :1-9. (in Chinese)
    [4] Ma L G, Zhang X H, Li Z, et al. Overview of commonly used spread spectrum techniques[J]. Academic Journal of Engineering and Technology Science, 2023, 6(12).
    [5] Hoesang C, Hichan M. Blind Estimation of Spreading Sequence and Data Bits in Direct-Sequence Spread Spectrum Communication Systems[J]. IEEE ACCESS, 2020, 8:148066-148074.
    [6] Shi Z K, Zhang Y S, Qian Z Y, et al. Compressive narrowband interference detection and parameter estimation in direct sequence spread spectrum communication[J]. IET Signal Processing, 2021, 16(1):14-25.
    [7] Shen B, Wang J X. Chip rate and pseudo-noise sequence estimation for direct sequence spread spectrum signals[J]. IET Signal Processing, 2017, 11(6):727-733.
    [8] 翟高伟,梁晨光,赵锦瑾,等.基于天链卫星的箭载Ka频段中继用户终端设计与实现[J].宇航总体 技术,2020,4(4):7-14. Zhai G W, Liang C G , Zhao J Q , et al. The design and implementation of general Ka-band terminal based on RDRSS[J]. Astronautical Systems Engineering Technology,2020,4(4) :7-14. (in Chinese)
    [9] Brack A. Reliable GPS BDS RTK positioning with partial ambiguity resolution[J]. GPS Solutions, 2017, 21(3): 1083-1092.
    [10] Zhou H L, Wang J, Widener M, et al. Examining the relationship between active transport and exposure to streetscape diversity during travel: A study using GPS data and street view imagery[J]. Computers, Environment and Urban Systems, 2024, 110:102105-.
    [11] 顾保国,陈阳.一种基于数据融合的目标跟踪方法[J]. 重庆大学学报,2022.11(45):127-133. Gu B G, Chen Y. A target tracking method based on data fusion. Journal of Chongqing University, 2022.11(45):127-133. (in Chinese)
    [12] 金磊, 曾富华, 王娜. 信息辅助快速捕获的抗欺骗干扰技术 [J]. 指挥与控制学报,2020, 6(1): 81?86 Jin L, Zeng F H, Wang N. Acquisition Method of Weak Spread Spectrum Signal under High Dynamic Condition. Journal of Command and Control, 2020, 6(1): 81?86(in Chinese)
    [13] 张凯,冯月婷,李林瞳,等.高灵敏度载波捕获与跟踪算法设计 [J]. 通信技术,2020,53(6): 1352-1358. Zhang K, Feng Y T, Li L T, et al. Design of Carrier Acquisition and Tracking Algorithm with High Sensitivity[J]. Communications Technology,2020,53(06):1352-1358. (in Chinese)
    [14] Yang R, Huang J H, Zhan X Y, et al. Decentralized FLL-Assisted PLL Design for Robust GNSS Carrier Tracking [J]. IEEE COMMUNICATIONS LETTERS, 2021, 25 (10): 3379-3383.
    [15] Jia-Chin L. Noncoherent sequential PN code acquisition using sliding correlation for chip-asynchronous direct-sequence spread-spectrum communications[J]. IEEE Trans. Communications, 2002, 50(4):664-676.
    [16] 动国英,苪正雄,葛志闪,等.一种高动态微弱扩频信号捕获方法.制导与引信,2021,9(42):39-42,49. Dong G Y, Bing Z X, Ge Z S, et al. Acquisition Method of Weak Spread Spectrum Signal under High Dynamic Condition GUIDANCE
    [17] Vilà-Valls J ,Navarro M ,Closas P , et al. Synchronization challenges in deep space communications [J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34 (1): 16-27.
    [18] 朱国富. 扩频体制低轨卫星通信信号捕获与跟踪系统设计[J] .电讯技术,2022,62 (5 ) :576 - 584. Zhu G F. Design of a spread spectrum LEO satellite signal acquisition and tracking system[J]. Telecommunication Engineering,2022,62 (5):576- 584. (in Chinese)
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:72
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-10-18
  • 最后修改日期:2024-04-18
  • 录用日期:2024-05-13
文章二维码