密度泛函理论研究Al24N24几何结构,芳香性和光谱性质*
作者:
作者单位:

1.太原师范学院物理系;2.太原理工大学物理学院

中图分类号:

O561

基金项目:

国家自然科学基金(12004276)和山西省高等学校科技创新项目(2023L236)资助


Density Functional Theory Study on the Structure, Aromaticity and Charges Characteristic of Al24N24
Author:
Affiliation:

1.Department of Physics, Taiyuan Normal University;2.College of Physics,Taiyuan University of Technology

Fund Project:

国家自然科学基金(12004276)和山西省高等学校科技创新项目(2023L236)资助

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在B3LYP/6-31g(d)基组水平上,利用密度泛函理论(DFT)优化了Al24N24团簇的几何和电子结构. 研究结果表明,优化所得Al24N24团簇的几何结构对称性分别为S4、C2、S8、O;在基态稳定结构基础上,得出其输运性质,既非p型输运材料,亦非n型输运材料,即不具有输运性质;在优化好的基态结构基础上,研究了它们的核独立化学位移值(NICS),由NICS值得出四种同分异构体均具有芳香性;此外,还研究了它们的红外和拉曼分子振动谱,四种团簇的红外-拉曼振动谱的振动强度排序分别为S8>S4>C2>O和S8>S4>O>C2.

    Abstract:

    The geometrical and electronic structure of Al24N24 are optimized by using density functional theory (B3LYP) at the 6-31g(d) level. The results show that the geometrical structure symmetry of the optimized Al24N24 clusters are S4, C2, S8, O. Based on the stable structure of the ground state, the transport property are obtained, the Al24N24 clusters are neither a p-type transport material, nor a n-type transport material, so, they have no transport properties. On the basis of the optimized ground state structure, the nuclear independent chemical shift values (NICS) of these isomers were studied, and the aromaticity were also studied. NICS values indicate that all isomers are aromatic and the characteristics of aromaticity are obtained.The IR-Raman spectra of the four clusters were obtained, and the order of vibrational intensity for the IR-Raman spectrums of the four clusters are S8>S4>C2>O and S8>S4>O>C2.

    参考文献
    [1] Augusto V, Baleiz?o C, Berberan-Santos M N, et al. Oxygen-proof fluorescence temperature sensing with pristine C70 encapsulated in polymernanoparticles[J]. J. Mater. Chem., 2010, 20: 1192
    [2] Li X D. Optical Properties of C50 fullerene and its two dimers C100 and C101[J]. Acta Phys. -Chim. Sin., 2007, 23(11): 1792-1796.
    [3] Anthony S M, Bachilo S M, Weisman R B. Comparative photophysics of C61H2 isomers[J]. J. Phys.Chem. A, 2003, 107: 10674-10679.
    [4] Bachilo S M, Benedetto A F, Weisman R B, et al. Time-resolved thermally activated delayed fluorescence in C70 and 1,2-C70H2[J]. J. Phys. Chem. A, 2000, 104(48): 11265-11269
    [5] Zhao J J, Du Q Y, Zhou S, et al. Endohedrally Doped Cage Clusters[J]. Chem. Rev., 2020, 120: 9021-9163.
    [6] Ngan V T, Gruene P, Claes P, et al. Disparate effects of Cu and V on structures of exohedral transition metal-doped silicon clusters: a combined far-infrared spectroscopic and computational study[J]. J. Am. Chem. Soc., 2010, 132: 15589-15602.
    [7] Lee J, Shizu K, Tanaka H, et al. Oxadiazole- and triazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes[J]. J. Mater. Chem. C, 2013, 1: 4599-4604.
    [8] Tanaka H, Shizu K, Miyazaki H, et al. Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine-triphenyltriazine (PXZ-TRZ) derivative[J]. Chem. Commun., 2012, 48: 11392-11394.
    [9] Oku T, Narita I, Nishiwaki A, et al. Atomic structures,electronic states and hydrogen storage of boron nitride nanocage clusters, nanotubes and nanohoms[A]. Diffusion and Defect Data. Pt A Defect and Diffusion Forum[R]. 2004, 226-228: 113-140.
    [10] Oku T. B12@B12@B60 and B12@(B12)12 giant clusters with doping atoms observed by high-resolution electron microscopy[J]. J. Phys. Chem. Solids, 2004, 65: 363-368
    [11] Oku T, Hiraga K, Matsuda T, et al. Formation and structures of multiply-twinned nanoparticles with fivefold symmetry in chemical vapor deposited boron nitride[J]. Diamond Relat Mater, 2003, 12:1918-1926.
    [12] Oku T, Nishiwaki A, Narita I, et al. Formation and structure of B24N24 clusters[J]. Chem. Phys. Lett., 2003, 380: 620-623.
    [13] Strout D L. Fullerenes Cn36(n=0, +2, -2) and their B- and N- doped analogues[J]. J. Phys. Chem. A, 2001, 105:261.
    [14] Strout D L. Structure of boron nitride E-phase: Diamond lattice of B12N12 fullerenes[J]. Chem. Phys. Let., 2004, 95: 383.
    [15] Fowler P W, Heine T, Mitchell D, et al. Boron–nitrogen analogues of the fullerenes: the isolated-square rule[J]. J. Chem. Soc., Faraday Trans., 1996, 92: 2197-2201
    [16] Baleizao C, Berberan-Santos M N. Thermally activated delayed fluorescence in fullerenes[J]. Ann. N. Y. Acad. Sci., 2008 1130: 224-234.
    [17] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09[M]. Revision A.02 Gaussian Inc. Wallingford CT,2009.
    [18] Runge E, Gross E K U. Density-functional theory for time-dependent systems[J]. Phys. Rev. Lett., 1984, 52: 997-1000.
    [19] Frisch A, Nielsen A B, Holder AJ. GAUSSVIEW User Manual[M]. Gaussian Inc. Pittsburgh PA, 2005.
    [20] Frisch A, Nielsen A B, Holder AJ. GAUSSVIEW 5.0[M].Gaussian Inc. Pittsburgh PA, 2005.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郭雅晶?,李秀燕.密度泛函理论研究Al24N24几何结构,芳香性和光谱性质*[J].重庆大学学报,2024,47(11).

复制
分享
文章指标
  • 点击次数:132
  • 下载次数: 65
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-10-25
  • 最后修改日期:2023-12-21
  • 录用日期:2024-04-07
  • 在线发布日期: 2025-02-25
文章二维码