一种改进YOLOv5s的金属表面缺陷检测算法研究
DOI:
CSTR:
作者:
作者单位:

重庆交通大学机电与车辆工程学院

作者简介:

通讯作者:

中图分类号:

TP391.4 ?????????????????????????

基金项目:

重庆市科技局项目(cstc2021jcyj-msxmX1047)


A detection algorithm based on YOLOv5s for metal surface defects
Author:
Affiliation:

1.School of Mechatronics &2.Vehicle Engineering, Chongqing Jiaotong University

Fund Project:

the Scientific and Technological Research Program of Chongqing Science and Technology Bureau (Grant No. cstc2021jcyj-msxmX1047)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    金属零部件大量应用于生产生活的等各个领域,其表面缺陷分布不均匀且部分特征微弱,常常造成漏检和误检。针对这一问题,提出了一种YOLOv5s-MD算法。在该算法中,改进了XSPPF模块,并融合了GSConv模块,加入了轻量化注意力机制,提高了模型对不同尺度缺陷特征有效获取能力;考虑到金属表面缺陷尺寸信息无规律并且差异较大而导致的预测框与真实框间方向不一致问题,采用了SIoU损失函数。将该检测算法在增强后金属表面缺陷数据集中进行了训练和验证。结果表明:缺陷检测的平均精度mAP@0.5达到了75.3%,所提出的检测算法在对金属表面缺陷检测任务中能够有效提升检测精度,降低误检率。

    Abstract:

    Metal parts are widely used in various fields such as production and life, and their surface defects are not evenly distributed and some characteristics are weak, which often causes missing and false detection. To solve this problem, the YOLOv5s-MD algorithm is proposed. In this algorithm, the XSPPF module is improved, the GSConv module is integrated, and the lightweight attention mechanism is added to improve the model"s ability to effectively acquire defect features at different scales. The SIoU loss function is adopted to consider the inconsistency between the predicted frame and the anchor frame due to the irregular and large difference in the size information of metal surface defects. The detection algorithm was trained and validated in the augumented metal surface defect dataset. The results show that the average precision of defect detection mAP@0.5 reaches 75.3%. The proposed detection algorithm can effectively improve the detection precision and reduce the false detection in the detection of metal surface defects.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-11-14
  • 最后修改日期:2024-02-25
  • 录用日期:2024-02-26
  • 在线发布日期:
  • 出版日期:
文章二维码