PF-LBM模拟含表面活性剂液滴的剪切动态行为
作者:
作者单位:

1.西南大学工程技术学院;2.重庆市北碚区天生路2号西南大学工程技术学院;3.重庆大学航空航天学院

中图分类号:

O359

基金项目:

国家自然科学基金(Grant Nos.12172070 and 12102071)和重庆市科技局直通车项目(No. CSTB2022BSXM-JCX0086)


PF-LBM simulation of Shear dynamic behavior of surfactant-laden droplets
Author:
Affiliation:

1.College of Engineering and Technology, Southwest University;2.College of Aerospace Engineering, Chongqing University

Fund Project:

The National Natural Science Foundation of China (Grant Nos.12172070 and 12102071) and Chongqing Doctoral Through Train Program (No. CSTB2022BSXM-JCX0086)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    表面活性剂可以降低流体界面的表面张力,显著改变固体表面的润湿特性,在工业生产中被广泛使用。为探究载表面活性剂液滴在固体表面上的运动特性,基于Cahn-Hilliard相场格子玻尔兹曼方法,引入由实验得出的考虑三相接触线移动速度的Yokoi动态接触角模型,建立了一种考虑可溶性表面活性剂流动的移动接触线模型。根据控制方程独立开发计算程序,并采用并行化处理提高了计算效率。在此基础上研究了线性剪切作用下液滴的动态过程,分析了有效毛细数Cae和固体表面润湿性对纯净液滴和载表面活性剂液滴变形的影响规律。结果表明:有效毛细数Cae增大会促进液滴变形,当其增大到一定程度时液滴会产生破裂,载表面活性剂液滴相对于纯净液滴有更大的变形量和移动速度。当液滴附着于亲水性固体表面时,在相同剪切作用下,载活性剂液滴相对于纯净液滴有更长的相对弧长和相对润湿长度;且液滴在亲水表面比其在中性表面变形的相对弧长和相对润湿长度值亦更大。而当液滴附着于疏水性固体表面时,液滴则会在剪切作用下脱离固体表面;在相同的毛细数下,载表面活性剂液滴相对于纯净液滴先脱离固体表面且移动速度更快。研究结果表明可溶性表面活性剂的存在会对液滴剪切运动和变形产生较大影响,其可以促进液滴的变形,增大液滴的移动速度。本文的数值方法可用于计算载有可溶性活性剂液滴的移动接触线问题。

    Abstract:

    Surfactants can reduce the surface tension of fluid interfaces and significantly alter the wetting properties of solid surfaces, making them widely used in industrial production. In order to investigate the motion characteristics of surfactant-laden droplets on solid surfaces, a mixed model incorporating soluble surfactant flow and contact line dynamics was established based on the Cahn-Hilliard phase field lattice Boltzmann method, and the Yokoi dynamic contact angle model considering the speed of three-phase contact line movement obtained from experiments. A computational program was independently developed based on the governing equations, and parallel processing was used to improve computational efficiency. Subsequently, the dynamic process of droplets under linear shear was studied, and the influence of the effective capillary number (Cae) and the solid surface wettability on the deformation of clean droplets and surfactant-laden droplets was analyzed. The results show that the increase of the effective capillary number Cae promotes droplet deformation, but when it reaches a certain value, the droplet will rupture. While, surfactant-laden droplets exhibit the greater deformation and the movement speed compared to pure droplets. When droplets are attached to hydrophilic solid surfaces, they are further elongated under shear, exhibiting longer relative arc length and relative wetting length compared to neutral surfaces, while surfactant-laden droplets have longer relative arc length and relative wetting length compared to pure droplets. However, when droplets are attached to hydrophobic solid surfaces, they will detach from the solid surface under shear, and surfactant-laden droplets detach earlier than pure droplets. The research results indicate that the presence of soluble surfactants has a significant impact on the shear motion of droplets, promoting droplet deformation and increasing droplet movement speed. The numerical methods used in this study can be applied to calculate the moving contact line problem of droplets with soluble surfactants.

    参考文献
    [1] 马学虎, 兰忠, 王凯, 等. 舞动的液滴:界面现象与过程调控[J]. 化工学报, 2018,69(01): 9-43.
    Ma X H, Lan Z, Wang K, et al. Dancing droplet: interface phenomena and process regulation[J]. CIESC Journal, 2018, 69(01): 9-43.
    [3] [2] 张晨辉. 表面活性剂对液滴在靶标表面润湿粘附行为的影响机制及调控[D]. 中国农业大学, 2017.
    [4] [3] 李建军, 赵亚溥. 细胞铺展动力学的研究进展[J]. 力学学报, 2012,44(5): 807-823.
    Li J J, Zhao Y B, RESEARCH PROGRESS ON KINETICS OF CELL SPREADING[J]. Chinese journal of theoretical and applied mechanics, 2012, 44(5): 807-823.
    [6] [4] 朱君悦, 段远源, 王晓东, 等. 流体在固体表面超铺展特性的研究进展[J]. 化工学报, 2014(3): 765-776.
    Zhu J Y, Duan Y Y, Wang X D, et al. Review of super-spreading of fluids on solid substrates[J]. CIESC Journal, 2014(3): 765-776.
    [8] [5] VENZMER J. Superspreading – Has the mystery been unraveled?[J]. Advances in Colloid and Interface Science, 2021,288: 102343.
    [9] [6] ZHANG J, LIU H, WEI B, et al. Pore-Scale Modeling of Two-Phase Flows with Soluble Surfactants in Porous Media[J]. Energy & fuels, 2021,35(23): 19374-19388.
    [10] [7] LAI M. Numerical Simulation of Moving Contact Lines with Surfactant by Immersed Boundary Method[J]. Communications in Computational Physics, 2019,8(4): 735-757.
    [11] [8] GANESAN S. Simulations of impinging droplets with surfactant-dependent dynamic contact angle[J]. Journal of Computational Physics, 2015,301: 178-200.
    [12] [9] XU J, REN W. A level-set method for two-phase flows with moving contact line and insoluble surfactant[J]. Journal of computational physics, 2014,263: 71-90.
    [13] [10] AFKHAMI S. Challenges of numerical simulation of dynamic wetting phenomena: a review[J]. Colloid & Interface Science, 2022,37(4): 33.
    [14] [11] 闵琪, 段远源, 王晓东, 等. 非牛顿流体液滴铺展过程的格子Boltzmann模拟[J]. 热科学与技术, 2013(4).
    Min Q, Zhu J Y, Duan Y Y, Wang X D, et al. Lattice Boltzmann simulation of droplet spreading of non-Newtonian fluid[J]. Journal of Thermal Science and Technology, 2013(4).
    [16] [12] ZHANG L Q, CHEN Z, SHU C, et al. A kinetic theory-based axisymmetric lattice Boltzmann flux solver for isothermal and thermal swirling flows[J]. Journal of computational physics, 2019,392: 141-160.
    [17] [13] LIU H, BA Y, WU L, et al. A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble?surfactants[J]. Journal of fluid mechanics, 2018,837: 381-412.
    [18] [14] 梁佳, 高明, 陈露, 等. 液滴撞击不同湿润性固壁面上静止液滴的格子Boltzmann研究[J]. 计算物理, 2021,38(3): 313-323.
    Liang J, Gao M, Chen L, et al. Lattice Boltzmann Study of a Droplet Impinging on a Stationary Droplet on a Fixed Wall Surface with Different Wettability[J]. Chinese Journal of Computational Physics, 2021, 38(3): 313-323.
    [20] [15] HUANG J, HUANG H, XU J. Energy-based modeling of micro- and nano-droplet jumping upon coalescence on superhydrophobic surfaces[J]. Applied physics letters, 2019,115(14).
    [21] [16] ZHANG C, GUO Z, LIANG H. High-order lattice-Boltzmann model for the Cahn-Hilliard equation[J]. Phys Rev E, 2019,99(4-1): 43310.
    [22] [17] 周平, 曾忠, 乔龙. 假塑性流体液滴撞击壁面上的铺展的格子Boltzmann模拟[J]. 重庆大学学报, 2018,41(12): 1-9.
    Zhou P, Zeng Z, Qiao L. Simulation of shear-thinning droplets impact on solid surfaces by using Lattice Boltzmann method[J]. Journal of Chongqing University(Natural Science Edition). 2018,41(12): 1-9.
    [24] [18] LIANG H, LIU H, CHAI Z, et al. Lattice Boltzmann method for contact-line motion of binary fluids with high density ratio[J]. Physical review. E, 2019,99(6-1): 63306.
    [25] [19] ZHANG S, TANG J, WU H. Phase-field lattice Boltzmann model for two-phase flows with large density ratio[J]. Physical review. E, 2022,105(1-2): 15304.
    [26] [20] CHEN Z A, HUANG F, TSAI P A, et al. Numerical study of microfluidic emulsion dynamics under the influence of heterogeneous surface wettability[J]. International Journal of Multiphase Flow, 2022,147: 103863.
    [27] [21] ZONG Y, ZHANG C, LIANG H, et al. Modeling surfactant-laden droplet dynamics by lattice Boltzmann method[J]. Physics of fluids (1994), 2020,32(12).
    [28] [22] ZHU G, KOU J, YAO J, et al. A phase-field moving contact line model with soluble surfactants[J]. Journal of computational physics, 2020,405: 109170.
    [29] [23] YOKOI K, VADILLO D, HINCH J, et al. Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface[J]. Physics of fluids (1994), 2009,21(7).
    [30] [24] COX R G. The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow[J]. Journal of Fluid Mechanics, 1986,168(-1): 169.
    [31] [25] TANNER L H. The spreading of silicone oil drops on horizontal surfaces[J]. Journal of physics. D, Applied physics, 1979,12(9): 1473-1484.
    [32] [26] VOINOV O V. Hydrodynamics of wetting[J]. Fluid Dynamics, 1977,11(5): 714-721.
    [33] [27] HOFFMAN R L. A Study of the Advancing Interface[J]. Journal of Colloid and Interface Science, 1975,50(2): 14.
    [34] [28] LIU H, ZHANG J, BA Y, et al. Modelling a surfactant-covered droplet on a solid surface in three-dimensional shear flow[J]. Journal of fluid mechanics, 2020,897.
    [35] [29] ZHANG J, LIU H, BA Y. Numerical Study of Droplet Dynamics on a Solid Surface with Insoluble Surfactants[J]. Langmuir, 2019,35(24): 7858-7870.
    [36] [30] 李家宇, 曾忠, 乔龙. 相场方法模拟液滴的动态润湿行为[J]. 应用数学和力学, 2019,40(9): 957-967.
    Li J Y, Zeng Z, Qiao L. Numerical Simulation of Droplets'' Dynamic Wetting Process With the Phase Field Method[J]. Applied Mathematics and Mechanics, 2019,40(9): 957-967.
    [38] [31] JIANG M, ZHOU B. Improvement and further investigation on Hoffman-function-based dynamic contact angle model[J]. International Journal of Hydrogen Energy, 2019,44(31): 16898-16908.
    [39] [32] JIANG M, ZHOU B, WANG X. Comparisons and validations of contact angle models[J]. International Journal of Hydrogen Energy, 2018,43(12): 6364-6378.
    [40] [33] MALGARINOS I, NIKOLOPOULOS N, MARENGO M, et al. VOF simulations of the contact angle dynamics during the drop spreading: Standard models and a new wetting force model[J]. Advances in Colloid and Interface Science, 2014,212: 1-20.
    [41] [34] SOLIGO G, ROCCON A, SOLDATI A. Coalescence of surfactant-laden drops by Phase Field Method[J]. Journal of Computational Physics, 2019,376: 1292-1311.
    [42] [35] KIM J. A continuous surface tension force formulation for diffuse-interface models[J]. Journal of Computational Physics, 2005,204(2): 784-804.
    [43] [36] YUN A, LI Y, KIM J. A new phase-field model for a water–oil-surfactant system[J]. Applied Mathematics and Computation, 2014,229: 422-432.
    [44] [37] LIANG H, XU J, CHEN J, et al. Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows[J]. Phys Rev E, 2018,97(3-1): 33309.
    [45] [38] LIANG H, SHI B C, GUO Z L, et al. Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows[J]. Physical review. E, Statistical, nonlinear, and soft matter physics, 2014,89(5): 53320.
    [46] [39] LIU Y, YAO Y, LI Q, et al. Contact Angle Measurement on Curved Wetting Surfaces in Multiphase Lattice Boltzmann Method[J]. Langmuir, 2023,39(8): 2974-2984.
    [47] [40] 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京:科学出版社, 2009.
    [48] [41] MANIKANTAN H, SQUIRES T M. Surfactant dynamics: hidden variables controlling fluid flows[J]. Journal of fluid mechanics, 2020,892.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:110
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-11-16
  • 最后修改日期:2024-02-20
  • 录用日期:2024-02-22
文章二维码