特重冰区特高压直流线路导线脱冰跳跃高度及杆塔受力特征研究
作者:
作者单位:

1.中国电建集团河北省电力勘测设计研究院有限公司;2.重庆大学航空航天学院

基金项目:

中国电建集团河北省电力勘测设计研究院有限公司科技项目(22-KJDW001)


Research on Stress Characteristics of Tower and Jump Height of the Ultra-high Voltage DC Lines in Ultra-heavy Ice Zone after Ice-shedding
Author:
Affiliation:

1.Power China Hebei Electric Power Engineering Co., LTD;2.College of Aerospace Engineering, Chongqing University

Fund Project:

Power China Hebei Electric Power Engineering Co., LTD (22-KJDW001)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    导线脱冰后的最大跳跃高度和杆塔受力特征是塔头设计关心的核心问题,特重冰区特高压直流线路导线覆冰厚度可达60mm~80mm,超过现有设计规程的最大冰厚。本文建立典型特高压直流连续耐张段线路塔线耦合体系模型,采用有限元方法模拟研究不同档不同极导线脱冰塔线体系动力响应,获得导线脱冰后杆塔的应力、纵向不平衡张力以及导线最大跳跃高度,分析杆塔受力特征及电气绝缘间隙。结果表明杆塔纵向不平衡张力取值大于重冰线路规范要求值,导线冰跳高度大于现有简化公式的计算值。基于研究结果提出特重冰区杆塔纵向不平衡张力取值建议以及对现有导线冰跳高度公式的修正。

    Abstract:

    Mechanical characteristics of tower and maximum jump height of conductor after ice-shedding are key issue in the design of a tower head. Ice thickness of UHV DC line in ultra-heavy ice zones may arrive at 60mm~80mm, exceeding the maximum value proposed in current transmission line design codes. The finite element models of tower-line systems of UHV DC line sections in ultra-heavy ice zones are set up, and the dynamic responses of the systems with different spans after ice shedding are numerically simulated. Stress and longitudinal unbalanced trension on the towers and the maximum conductor jump height are obtained, and the mechanical characteristics of the towers and electric isolation clearance are analyzed. It is shown that the longitudinal unbalanced tensions are larger than those determined by current deighn code and the maximum conductor jump heights are larger than those by current formulus. The longitudinal unbalanced tension on the towers and the modification to the jump height formula are suggested.

    参考文献
    [1] Jamaleddine A, McClure G, Rousselet J, et al. Simulation of ice-shedding on electrical transmission lines using ADINA[J]. Computers & Structures, 1993, 47: 523-536.
    [2] McClure G, Lapointe M. Modeling the structural dy-namic response of overhead transmission lines[J]. Computers & Structures, 2003, 81: 825-834.
    [3] Roshan Fekr M, McClure G. Numerical analysis of the dynamic response of iceshedding on electrical transmission lines[J]. Atmospheric Research, 1998, 46(1-2):1-11.
    [4] 李黎, 夏正春, 付国祥, 等. 大跨越输电塔-线在线路脱冰作用下的振动[J]. 振动与冲击, 2008, 27(9): 32-34.
    [5] Li Li, Xia Zhengchun, Fu Guoxiang, et al. Ice-shedding induced vibration of a long-span electric transmission tower-line system[J]. Journal of Vibration and Shock, 2008, 27(9): 32-34.
    [6] [5] 李雪, 李宏男, 黄连壮. 高压输电线路覆冰倒塔非线性屈曲分析[J]. 振动与冲击, 2009, 28(5): 111-114.
    [7] Li Xue, Li Hongnan, Huang Lianzhuang. Nonlinear buckling analysis of collapsed steel tower for 220kv Guajing iced transmission line[J]. Journal of Vibration and Shock, 2009, 28(5): 111-114.
    [8] [6] 鲁元兵, 楼文娟, 李焕龙. 输电导线不均匀脱冰的全过程模拟分析[J]. 振动与冲击, 2010, 29(9): 47-50.
    [9] Lu Yuanbing, Lou Wenjuan, Li Huanlong. Whole process analysis for non-uniform ice shedding of transmission lines[J]. Journal of Vibration and Shock, 2010, 29(9): 47-50.
    [10] [7] 杨风利, 杨靖波, 付东杰, 等. 塔线系统脱冰跳跃动力响应分析[J]. 振动工程学报, 2010, 23(1): 86-93.
    [11] Yang Fengli, Yang Jingbo, Fu Dongjie, et al. Analysis on dynamic responses of transmission tower-line system under ice shedding[J]. Journal of Vibration Engineering, 2010, 23(1): 86-93.
    [12] [8] 姚陈果, 张薷方, 张磊, 等. 架空输电塔-线体系导线风振对脱冰的影响[J]. 高电压技术, 2014, 40(2): 381-387.
    [13] Yao Chenguo, Zhang Rufang, Zhang Lei, et al. Influence of wind vibration of overhead transmission tower-line system on ice shedding[J]. High Voltage Engineering, 2014, 40(2): 381-387.
    [14] [9] 刘玥君, 张新语, 郭峻菘, 等. 输电线路在冰风荷载作用下的可靠性研究[J]. 东北电力大学学报, 2020, 40(05): 63-68.
    [15] Liu Yuejun, Zhang Xinyu, Guo Junsong, et al. Study on the reliability of electric transmission line under ice load and wind load[J]. Journal of Northeast Electric Power University, 2014, 40(2): 63-68.
    [16] [10] Li J X, Wang B, Sun J, et al. Collapse analysis of a transmission tower-line system induced by ice shedding[J]. Frontiers in Physics, 2021, 9.
    [17] [11] 张殿生. 电力工程高压送电线路设计手册[M]. 2版. 北京: 中国电力出版社, 2003.
    [18] [12] 李梦丽, 柏晓路, 李清, 等. 大截面导线重覆冰区不均匀冰纵向荷载特性分析[J]. 高压电器, 2020, 56(02): 183-188.
    [19] Li Mengli, Bai Xiaolu, Li Qing, et al. Analysis on longitudinal load of uneven ice-shed for large cross-section conductor in heavy icing area[J]. High Voltage Apparatus, 2020, 56(02): 183-188.
    [20] [13] Yan B, Chen K Q, Guo Y M, et al. Numerical simulation study on jump height of iced transmission lines after iceshedding[J]. IEEE Transactions on Power Delivery, 2013, 28(1): 216-225.
    [21] [14] 严波, 郭跃明, 陈科全, 等. 架空输电线脱冰跳跃高度的计算公式[J]. 重庆大学学报: 自然科学版, 2009, 32(11): 1306-1310.
    [22] Yan Bo, Guo Yueming, Chen Kequan, et al. Formula for jump height of overhead transmission lines after ice-shedding[J]. Journal of Chongqing University, 2009, 32(11): 1306-1310.
    [23] [15] 王德千, 严波, 黄桂灶, 等. 输电导线脱冰跳跃高度实用简化计算公式[J]. 重庆大学学报: 自然科学版, 2020, 43(2): 60-67.
    [24] Wang Deqian, Yan Bo, Huang Guizhao, et al. Simplified formula for jump height of transmission lines after ice-shedding[J]. Journal of Chongqing University, 2020, 43(2): 60-67.
    [25] [16] Barbieri N, Oswaldo Honorato de Souza Junior, Barbieri R. Dynamical analysis oftransmission line cables. Part 1—linear theory[J]. Mechanical Systems and Signal Processing, 2004, 18(3): 659-669.
    [26] [17] Barbieri N, Oswaldo Honorato de Souza Jinior, Barbieri R. Dynamical analysis oftransmission line cables. Part 2—damping estimation[J]. Mechanical Systems and Signal Processing, 2004, 18(3): 671-681.
    [27] [18] Barbieri R, Barbieri N, Oswaldo Honorato de Souza Jinior. Dynamical analysis oftransmission line cables. Part 3—Nonlinear theory[J]. Mechanical Systems and Signal Processing, 2008, 22(4): 992-1007.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:116
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-11-30
  • 最后修改日期:2024-01-18
  • 录用日期:2024-01-18
文章二维码