复杂后厨环境下的口罩佩戴规范性检测
作者:
作者单位:

1.厦门理工学院 福建省客车先进设计与制造重点实验室;2.厦门大学 航空航天学院

中图分类号:

TP391.4???????

基金项目:

福建省自然科学基金资助项目(2023J011439,2019J01859)


Detection of Mask Wearing Status in Complex Kitchen Environments
Author:
Affiliation:

1.Fujian Key Laboratory of Advanced Bus Coach Design and Manufacture,Xiamen University of Technology,Xiamen;2.School of Aerospace Engineering,Xiamen University,Xiamen

Fund Project:

Supported by Fujian Natural Science Foundation (2023J011439,2019J01859)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    餐饮从业人员应佩戴口罩是基本要求,但佩戴是否规范仍未引起充分关注。为此,针对油烟、水汽、火光等复杂后厨环境提出一种口罩佩戴规范性检测方法。首先采集并创建了具有针对性的数据集CKEMFD-12k;其次构建了一个多任务卷积神经网络MMWN来提取判断口罩佩戴情况所需的关键要素信息,通过自主设计的多尺度混联空间金字塔池化模块MHSPP和跨任务交互管式注意力机制TETAM,相比现有算法取得了94.68%的最高目标检测准确率、4.62%的最小口鼻关键点平均定位误差和94.32%的最高口罩区域分割准确率;最后计算口鼻关键三角区并解析其与口罩区域的覆盖关系,给出规范佩戴、不当佩戴和没有佩戴口罩的判定原理。实验表明,综合判断准确率为93.57%,超越现有主流算法。

    Abstract:

    The basic requirement for catering staff to wear masks is widely acknowledged, but it still has not paid sufficient attention to mask wearing specification. To deal with this, a detection method for mask wearing specification was proposed for complex working environments of kitchen such as oil fumes, water vapor, and flames. Firstly, a targeted dataset named CKEMFD-12k was collected and constructed. Secondly, a multi-task convolutional neural network(MMWN) was constructed to extract key element information for assessing mask wearing status. By utilizing the self-designed multi-scale hybrid spatial pyramid pool module(MHSPP) and tube-embedded transformer attention mechanism(TETAM), the method achieved the highest average target detection accuracy of 94.68%, the minimum mouth-nose key points mean error of 4.62%, and the optimal mask region segmentation pixel accuracy of 94.32% compared to the existing network. At last, a algorithm was designed to calculate mouth-nose key triangle area and analyze their coverage relationship with the mask area, which provides a judgment method or three mask wearing status: normative wearing, improper wearing, and no wearing. Experiment shows that the comprehensive judgment accuracy is 93.57%, surpassing existing mainstream algorithms.

    参考文献
    [1] 中国疾控中心公卫处.中小学校重点人群诺如病毒感染防控核心要点之教师与食堂从业人员篇[EB/OL]. (2023-03-22) [2023-11-01]. https://www. chinacdc.cn/yyrdgz/202303/t20230322_26444 5.html.Chinese Center for Disease Control and Public Health. The core points of prevention and control of norovirus infection in key populations in primary and secondary schools: teachers and cafeteria workers[EB/OL]. (2023-03-22)[2023-11-01]. https://www.chinacdc. cn/yyrdgz/202303/ t20230322_264445.html. (in Chinese)
    [2] 国家疾控局.预防新型冠状病毒感染公众佩戴口罩指引[EB/OL]. (2023-04-12)[2023-11-01]. https://www.gov.cn/lianbo/ 2023-04/12/content_5751073.htm.National Institute of Disease Control and Prevention. Guidelines for Public Wearing of Masks to Prevent Novel Coronavirus Infections[EB/OL]. (2023-04-12) [2023-11-01]. https://www.gov.cn/ lianbo/2023-04/12/content_5751073.htm. (in Chinese)
    [3] 疾病预防控制局.公众和重点职业人群戴口罩指引[EB/OL]. (2021-08-13)[2023-11-01].http://www.nhc.gov.cn/jkj/s5898bm/ 202108/25974dfc8cc045c28638e30ab8558155.shtm.Bureau of Disease Control and Prevention. Guidelines for Wearing Masks for the Public and Key Occupational Groups [EB/OL]. (2021-08-13) [2023-11-01]. http://www.nhc.gov.cn/jkj/s5898bm/202108/ 25974dfc8cc045c28638e30ab8558155.shtm. (in Chinese)
    [4] Nagrath P, Jain R, Madan A, et al. SSDMNV2: a real time DNN-based face mask detection system using single shot multibox detector and MobileNetV2[J]. Sustainable cities and society, 2021, 66: 102692.
    [5] Loey M, Manogaran G, Taha M H N, et al. A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic[J]. Measurement, 2021, 167: 108288.
    [6] 薛均晓,程君进,张其斌等.改进轻量级卷积神经网络的复杂场景口罩佩戴检测方法[J].计算机辅助设计与图形学学报, 2021, 33(07): 1045-1054.Xue J X, Cheng J J, Zhang Q B, et al. Improved Efficient Convolutional Neural Networks for Complex Scene Mask-Wearing Detection [J]. Journal of Computer-Aided Design Computer Graphics, 2021, 33(07): 1045-1054. (in Chinese)
    [7] 杨国亮, 余帅英, 杨浩. 改进YOLOV5s的多尺度融合口罩佩戴检测方法[J]. 计算机工程与应用, 2023, 59(14): 184-191.Yang G L, Yu S Y, Yang H, et al. Multi-Scale fusion mask wearing detection method based on improved YOLOV5s[J]. Computer Engineering and Applications, 2023, 59(14): 184-191. (in Chinese)
    [8] 陈昭俊, 储珺, 曾伦杰. 基于动态加权类别平衡损失的多类别口罩佩戴检测[J]. 图学学报, 2022, 43(04): 590-598.Chen Z J, Chu J, Zeng L J. Multi category mask wearing detection based on dynamic weighted category balance loss[J]. Journal of Graphics, 2022, 43(04): 590-598. (in Chinese)
    [9] 姜月武, 张玉金, 施建新. 基于注意力残差网络的口罩佩戴规范检测算法[J]. 传感器与微系统, 2023, 42(02): 140-144.Jiang Y W, Zhang Y J, Shi J X. Mask wearing specification detection algorithm based on attention residual network[J]. Sensors and Microsystems, 2019, 42(02): 140-144. (in Chinese)
    [10] Yu J, Zhang X, Wu T, et al. A Face Detection and Standardized Mask-Wearing Recognition Algorithm[J]. Sensors, 2023, 23(10): 4612.
    [11] Kaliappan V K, Thangaraj R, Pandiyan P, et al. Real-time face mask position recognition system using YOLO models for preventing COVID-19 disease spread in public places[J]. International Journal of Ad Hoc and Ubiquitous Computing, 2023, 42(2): 73-82.
    [12] Ye H, Xu D. Inverted pyramid multi-task transformer for dense scene understanding[C]// European Conference on Computer Vision(ECCV), October 23-27, 2022, Cham: Springer Nature Switzerland , 2022: 514-530.
    [13] 郭志民,周劼英,王丹等.基于Transformer神经网络模型的网络入侵检测方法[J].重庆大学学报, 2021, 44(11): 81-88.Guo Z M, Zhou J Y, Wang D, et al. Network intrusion detection method based on Transformer neural network model[J]. Journal of Chongqing University, 2021, 44(11): 81-88. (in Chinese)
    [14] Jocher G, Nishinura K, Mineeva T. YOLOv8 [DB/OL]. (2023-01-10)[2023-11-01].https://github.com/ultralytics/ultralytics.
    [15] He K M, Zhang X Y , Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
    [16] 董绍江,谭浩,刘超等.改进YOLOv5s的桥梁表观病害检测方法[J/OL].重庆大学学报,1-12[2023-12-01] http://kns.cnki.net/kcms/detail/50.1044.N.20230331.1847.002.html.Dong S J, Tan H, Liu C, et al. Apparent disease detection of bridges based on improved YOLOv5s[J/OL]. Journal of Chongqing University, 1-12[2023-12-05] http://kns.cnki.net/kcms/detail/50.1044.N.20230331.1847.002.html. (in Chinese)
    [17] Li C, Li L, Jiang H, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. (2022-09-07) [2023-11-01]. https://arxiv.org/abs/2209.02976.
    [18] Feng Z H, Kittler J, Awais M, et al. Wing loss for robust facial landmark localisation with convolutional neural networks[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), June 18-21, 2018, Salt Lake City, USA: IEEE, 2018: 2235-2245.
    [19] Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector[C]//European Conference on Computer Vision(ECCV), October 11-14, 2016, Amsterdam, Netherlands: Springer International Publishing, 2016: 21-37.
    [20] Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
    [21] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]//European Conference on Computer Vision(ECCV), August 23–28, 2020, Glasgow, UK: Springer International Publishing, 2020: 213-229.
    [22] Ge Z, Liu S, Wang F, et al. Yolox: Exceeding yolo series in 2021[EB/OL]. (2021-08-06)[2023-11-01]. https://arxiv.org/abs/ 2107.08430.
    [23] Zhang K, Zhang Z, Li Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503.
    [24] Deng J, Guo J, Ververas E, et al. Retinaface: Single-shot multi-level face localisation in the wild[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), ), June 13-19, 2020, Seattle, WA, USA: IEEE, 2020: 5203-5212.
    [25] Xu Y, Yan W, Yang G, et al. CenterFace: joint face detection and alignment using face as point[J]. Scientific Programming, 2020, 2020: 1-8.
    [26] Qi D, Tan W, Yao Q, et al. YOLO5Face: why reinventing a face detector[C]//European Conference on Computer Vision(ECCV), October 23–27, 2022, Aviv, Israel: Springer International Publishing, 2022: 228-244.
    [27] SUN K, ZHAO Y, JIANG B, et al. High-resolution representations for labeling pixels and regions[EB/OL]. (2019-04-09)[2023-11-01].https://arxiv. org/abs/1904.04514.
    [28] Xu Y, Zhang J, Zahng Q, et al. Vitpose: Simple vision transformer baselines for human pose estimation[J]. Advances in Neural Information Processing Systems, 2022, 35: 38571-38584.
    [29] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, October 5-9, 2015, Munich, Germany: Springer International Publishing, 2015: 234-241.
    [30] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), July 21-26, 2017. Honolulu, HI, USA: IEEE, 2017: 2881-2890.
    [31] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-12-05)[2023-11-01]. https://arxiv.org/abs/1706.05587.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-05
  • 最后修改日期:2024-04-17
  • 录用日期:2024-05-13
文章二维码