复杂后厨环境下的口罩佩戴规范性检测
DOI:
CSTR:
作者:
作者单位:

1.厦门理工学院 福建省客车先进设计与制造重点实验室;2.厦门大学 航空航天学院

作者简介:

通讯作者:

中图分类号:

TP391.4???????

基金项目:

福建省自然科学基金资助项目(2023J011439,2019J01859)


Detection of Mask Wearing Status in Complex Kitchen Environments
Author:
Affiliation:

1.Fujian Key Laboratory of Advanced Bus Coach Design and Manufacture,Xiamen University of Technology,Xiamen;2.School of Aerospace Engineering,Xiamen University,Xiamen

Fund Project:

Supported by Fujian Natural Science Foundation (2023J011439,2019J01859)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    餐饮从业人员应佩戴口罩是基本要求,但佩戴是否规范仍未引起充分关注。为此,针对油烟、水汽、火光等复杂后厨环境提出一种口罩佩戴规范性检测方法。首先采集并创建了具有针对性的数据集CKEMFD-12k;其次构建了一个多任务卷积神经网络MMWN来提取判断口罩佩戴情况所需的关键要素信息,通过自主设计的多尺度混联空间金字塔池化模块MHSPP和跨任务交互管式注意力机制TETAM,相比现有算法取得了94.68%的最高目标检测准确率、4.62%的最小口鼻关键点平均定位误差和94.32%的最高口罩区域分割准确率;最后计算口鼻关键三角区并解析其与口罩区域的覆盖关系,给出规范佩戴、不当佩戴和没有佩戴口罩的判定原理。实验表明,综合判断准确率为93.57%,超越现有主流算法。

    Abstract:

    The basic requirement for catering staff to wear masks is widely acknowledged, but it still has not paid sufficient attention to mask wearing specification. To deal with this, a detection method for mask wearing specification was proposed for complex working environments of kitchen such as oil fumes, water vapor, and flames. Firstly, a targeted dataset named CKEMFD-12k was collected and constructed. Secondly, a multi-task convolutional neural network(MMWN) was constructed to extract key element information for assessing mask wearing status. By utilizing the self-designed multi-scale hybrid spatial pyramid pool module(MHSPP) and tube-embedded transformer attention mechanism(TETAM), the method achieved the highest average target detection accuracy of 94.68%, the minimum mouth-nose key points mean error of 4.62%, and the optimal mask region segmentation pixel accuracy of 94.32% compared to the existing network. At last, a algorithm was designed to calculate mouth-nose key triangle area and analyze their coverage relationship with the mask area, which provides a judgment method or three mask wearing status: normative wearing, improper wearing, and no wearing. Experiment shows that the comprehensive judgment accuracy is 93.57%, surpassing existing mainstream algorithms.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-05
  • 最后修改日期:2024-04-17
  • 录用日期:2024-05-13
  • 在线发布日期:
  • 出版日期:
文章二维码