Ti60合金疲劳蠕变交互作用下蠕变应力门槛值预测
作者:
作者单位:

重庆大学 航空航天学院

中图分类号:

V252???????


Prediction of threshold value of creep stress of Ti60 alloy under fatigue-creep interaction
Author:
Affiliation:

1.College of Aerospace Engineering,Chongqing University,Chongqing,400044

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    对Ti60合金试件在550℃高温环境下开展疲劳-蠕变交互试验,在疲劳应力?max=450MPa、应力比R=0.1的试验条件下,研究不同蠕变应力对钛合金疲劳蠕变行为的影响,并根据试验数据基于Norton模型提出一种能在样本有限的情况下,仅通过短时间的试验来预测较长时间的蠕变应力门槛值的预测模型。将该模型预测结果与最大轴向应力法计算结果进行对比,并将其与升降法所得试验结果进行了对比,相对误差均在2%以内,结果表明该预测模型能较为准确地预测疲劳蠕变试验条件下蠕变应力门槛值。

    Abstract:

    Fatigue-creep interaction test was carried out on Ti60 alloy specimen at 550℃. Under the test conditions of fatigue stress ?max=450MPa and stress ratio R=0.1, the influence of different creep stress on fatigue-creep behavior of titanium alloy was studied. According to the test data and based on the Norton model, a new method was proposed which can be used to improve the fatigue-creep behavior of titanium alloy with limited samples. A prediction model that predicts the threshold value of creep stress over a longer period of time only through a short period of testing. The prediction results of this model are compared with those of the maximum axial stress method and those of the lifting method. The relative error is less than 2%. The results show that the prediction model can accurately predict the creep stress threshold under the fatigue-creep test conditions.

    参考文献
    [1] ????????????? 李欣, 赵军, 刘时兵, 等. 航空用高温钛合金的研究进展: 2020中国铸造活动周[C], 中国安徽合肥, 2020.
    [2] ????????????? 何春艳, 张利军. 国内外高温钛合金的发展与应用[J]. 世界有色金属, 2016(01):21-25.
    [3] ????????????? 张鸿渐. 高温钛合金的发展与应用[J]. 技术与市场, 2015,22(12):208.
    [4] ????????????? 涂善东. 高温结构完整性原理[M]. 科学出版社, 2003.
    [5] ????????????? 张俊善. 材料的高温变形与断裂[M]. 科学出版社, 2007.
    [6] ????????????? Viswanathan R, Stringer J. Failure mechanisms of high temperature components in power plants[J]. JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2000,122(3):246-255.
    [7] ????????????? 龚伟忠. 316H不锈钢缺口蠕变-疲劳行为及其寿命预测方法研究[D]. 华东理工大学, 2022.
    [8] ????????????? 王润梓, 廖鼎, 张显程, 等. 高温结构蠕变疲劳寿命设计方法:从材料到结构[J]. 机械工程学报, 2021,57(16):66-86.
    [9] ????????????? 王润梓. 基于能量密度耗散准则的蠕变—疲劳寿命预测模型及应用[D]. 华东理工大学, 2019.
    [10] ????????????? Zhang S, Takahashi Y. Creep-fatigue life and damage evaluation under various strain waveforms for Ni-based Alloy 740H[J]. INTERNATIONAL JOURNAL OF FATIGUE, 2023,176.
    [11] ????????????? Takazawa S, Kang J, Abe M, et al. Demonstration of single-frame coherent X-ray diffraction imaging using triangular aperture: Towards dynamic nanoimaging of extended objects[J]. OPTICS EXPRESS, 2021,29(10):14394-14402.
    [12] ????????????? Takahashi Y. Modelling of rupture ductility of metallic materials for wide ranges of temperatures and loading conditions, part I: development of basic model[J]. MATERIALS AT HIGH TEMPERATURES, 2020,37(6):357-369.
    [13] ????????????? Takahashi Y. Modelling of rupture ductility of metallic materials over wide ranges of temperatures and loading conditions, part II: comparison with strain energy-based approach[J]. MATERIALS AT HIGH TEMPERATURES, 2020,37(5):340-350.
    [14] ????????????? 王家璇, 李梦阳, 郑泽邦. 蠕变-疲劳交互作用下P91钢变形行为的研究进展[J]. 热加工工艺, 2023:1-7.
    [15] ????????????? Saad A A, Bachok Z, Sun W. A study on the damage evolution of P91 steel under cyclic loading at high temperature[J]. International Journal of Automotive and Mechanical Engineering, 2016,13:3564-3573.
    [16] ????????????? Carlo C, Pietro A, Davide B. Low cycle fatigue,creep-faitgue and relaxation-fatigue tests on P91[J]. Journal of Physical Science and Application, 2017,7(2):18-26.
    [17] ????????????? 魏峰. P91钢蠕变—疲劳交互作用损伤模型研究及寿命评估[D]. 西南交通大学, 2009.
    [18] ????????????? 郝玉龙. P91钢蠕变特性及蠕变疲劳交互作用研究[D]. 西南交通大学, 2005.
    [19] ????????????? 刘洪杰. 电站锅炉用P91钢蠕变/疲劳交互作用的试验研究[J]. 动力工程, 2007(06):990-995.
    [20] ????????????? Xu L, Zhao L, Gao Z, et al. A novel creep-fatigue interaction damage model with the stress effect to simulate the creep-fatigue crack growth behavior[J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2017,130:143-153.
    [21] ????????????? Narasimhachary S B, Saxena A. Results of the ASTM Round Robin on Creep-Fatigue Crack Growth Testing of a P91 Steel[J]. MATERIALS PERFORMANCE AND CHARACTERIZATION, 2019,8(1):448-467.
    [22] ????????????? Zhang M, Zhang Y, Liu H, et al. Judgment criterion of the dominant factor of creep-fatigue crack growth in a nickel-based superalloy at elevated temperature[J]. INTERNATIONAL JOURNAL OF FATIGUE, 2019,118:176-184.
    [23] ????????????? Liu H, Bao R, Fei B. Determination of creep crack growth threshold by experiments under elevated temperature with pre-stressed specimens[J]. 11TH INTERNATIONAL FATIGUE CONGRESS, PTS 1 AND 2, 2014,891-892:371-376.
    [24] ????????????? Liu H, Bao R, Lei W M, et al. Evaluating the critical temperature of creep-fatigue interaction a nickel-based powder metallurgy superalloy[J]. ADVANCES IN FRACTURE AND DAMAGE MECHANICS XII, 2014,577-578:625-628.
    [25] ????????????? 李舜酩. 机械疲劳与可靠性设计[M]. 科学出版社, 2006.
    [26] ????????????? 中国科学院上海应用物理研究所, 华东理工大学, 中国科学院金属研究所, 等. 金属材料 蠕变-疲劳试验方法[S]. 国家市场监督管理总局;国家标准化管理委员会.
    [27] ????????????? Liu Z, Gong J, Zhao P, et al. Creep-fatigue interaction and damage behavior in 9-12%Cr steel under stress-controlled cycling at elevated temperature: Effects of holding time and loading rate[J]. INTERNATIONAL JOURNAL OF FATIGUE, 2022,156.
    [28] ????????????? Takahashi Y. Study on creep-fatigue evaluation procedures for high chromium steels - Part II: Sensitivity to calculated deformation[J]. INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2008,85(6):423-440.
    [29] ????????????? Dong C, Yu H, Jiao Z, et al. Low cycle fatigue, creep and creep-fatigue interaction behavior of a TiAl alloy at high temperatures[J]. SCRIPTA MATERIALIA, 2018,144:60-63.
    [30] ????????????? 陈凌, 张贤明, 欧阳平. 一种疲劳-蠕变交互作用寿命预测模型及试验验证[J]. 中国机械工程, 2015,26(10):1356-1361.
    [31] ????????????? 陈学东, 范志超, 江慧丰, 等. 复杂加载条件下压力容器典型用钢疲劳蠕变寿命预测方法[J]. 机械工程学报, 2009,45(02):81-87.
    [32] ????????????? 郭广平, 丁传富, 中国航发北京航空材料研究院. 航空材料力学性能检测[M]. 机械工业出版社, 2017.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:173
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-12-09
  • 最后修改日期:2024-01-05
  • 录用日期:2024-02-19
文章二维码