改进鲸鱼优化算法在模拟器运动洗出中的应用
作者单位:

中国民航大学


Application of Improved Whale Optimization Algorithm in Motion Washout Simulator
Author:
Affiliation:

1.School of Aircraft Engineering, Civil Aviation University of China, Tianjin 300300, P. R. China;2.中国民航大学

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对飞机模拟器运动平台经典洗出算法参数选取不当,对动感逼真度产生较大误差,影响模拟效果的情况,提出了一种融合模拟退火和自适应变异的改进鲸鱼优化算法。结合人体前庭系统,建立人体感知仿真模型,将动感逼真度问题转换为寻找洗出算法滤波器最优参数的问题。通过测试函数证明改进鲸鱼算法相较于传统鲸鱼算法,以及与常见的粒子群算法和遗传算法,具有更好的搜索效果。此外仿真实验也表明,与经典洗出算法和传统鲸鱼优化算法结果相比,改进鲸鱼优化算法收敛速度最快,洗出时间分别缩短了83.3%和33.4%,相比优化了45.2%和26.1%的运动空间。证明了改进后鲸鱼算法具有较强的鲁棒性,运动洗出模拟效果明显提升。

    Abstract:

    Aiming at the situation that the parameters of the classical washout algorithm of the motion platform of the aircraft simulator are not selected properly, which causes a large error to the dynamic fidelity and affects the simulation effect, an improved whale optimization algorithm combining simulated annealing and adaptive variation is proposed. Combining with the vestibular system, a human perception simulation model is established, and the dynamic fidelity problem is transformed into the problem of finding the optimal parameters of the filter of the washout algorithm. The test function proves that the improved whale algorithm has better searching effect than traditional whale algorithm, particle swarm optimization algorithm and genetic algorithm. In addition, the simulation experiment also shows that compared with the classical washout algorithm and the traditional whale optimization algorithm, the improved whale optimization algorithm had the fastest convergence speed, the washout time was shortened by 83.3% and 33.4%, respectively, and the motion space was optimized by 45.2% and 26.1%. It is proved that the improved whale algorithm has strong robustness, and the simulation effect of motion washout is obviously improved.

    参考文献
    [1] Nahon M A Reid L D.Simulator Motion-Drive Algorithms:A Designer′s Perspective[J].Journal of Guidance Cntrol and Dynamics 1990 13(2):356-362.
    [2] R. M. Rizk-Allah, O. Saleh, E. A. Hagag, and A. A. A. Mousa, "Enhanced Tunicate Swarm Algorithm for Solving Large-Scale Nonlinear Optimization Problems," International Journal of Computational Intelligence Systems, vol. 14, no. 1, 2021.
    [3] J. Jiang, Z. Zhao, Y. Liu, W. Li, and H. Wang, "DSGWO: An improved grey wolf optimizer with diversity enhanced strategy based on group-stage competition and balance mechanisms," Knowledge-Based Systems, vol. 250, 2022.
    [4] L. YiFei, C. MaoSen, H. T. Ngoc, S. Khatir, and M. Abdel Wahab, "Multi-parameter identification of concrete dam using polynomial chaos expansion and slime mould algorithm," Computers Structures, vol. 281, 2023.
    [5] M. Khishe and M. R. Mosavi, "Chimp optimization algorithm," Expert Systems with Applications, vol. 149, 2020.
    [6] Asadi H, Mohammadi A, Mohamed S, et al. A ParticleSwarm Optimization-based washout filter for improving simulator motion fidelity. Proceedings of 2016 IEEE International Conference on Systems,Man,and Cybernetics (SMC).Budapest:IEEE,2016.1963–1968.
    [7] 王小亮, 李立, 张卫华. 洗出位置对列车驾驶模拟器逼真度的影响研究[J]. 机械与电子, 2007, (04): 21-24.
    [8] 郭盛, 刘烨磊, 曲海波等. 飞行模拟器洗出算法的改进及实现. 北京交通大学学报, 2014, 38(1): 117–121.
    [9] 王辉,裴聪. 洗出算法在控制补偿下的多通道结构优化[J]. 航空科学技术, 2023, 34(04): 41-48.
    [10] 王辉,张保峰.飞行模拟器新型倾斜协调体感算法应用分析[J].重庆大学学报,2019,45(5):19-25.
    [11] 王小亮,李立,张卫华.列车驾驶模拟器经典洗出算法的参数优化[J].中国铁道科学,2008(5):102-107.
    [12] 王辉,吕兴顺.一种改进的萤火虫算法及在洗出优化中的应用[J].系统仿真学报,2021,33(2):306-314.
    [13] MOMANI A Q,CARDULLO F M.A review of the recent literature on the mathematical modeling of the vestibular system [C]//2018 AIAA Modeling and Simulation Technologies Conference. 2018.
    [14] 王涛,Ryad Chellali. 非线性权重和收敛因子的鲸鱼算法[J]. 微电子学与计算机,2019,36(1):11-15.
    [15] Y. Shi and R. Eberhart, "Modified particle swarm optimizer," in Proc of IEEE Icec Conference, 1999.
    [16] 朱丽娜, 李爽. 求解连续空间优化问题的改进入侵杂草算法. 内蒙古师范大学学报(自然科学汉文版), 2018.47(1), 7–15.
    [17] LI M D, XU G H, FU Y W, et al. Improved whale optimization algorithm based on variable spiral position update strategy and adaptive inertia weight[J]. Journal of intelligent fuzzy systems:applications in engineering and technology, 2022, 42(3):1501-1517.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:115
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-12-12
  • 最后修改日期:2024-01-05
  • 录用日期:2024-02-22
文章二维码