双裂隙灰岩冻融损伤力学特性及宏微观破坏特征
作者:
作者单位:

中国人民解放军陆军工程大学,国防工程学院

基金项目:

国家重点研发计划(编号:2019YFC1803502);国家重点研发计划(编号:2021YFC3001303)


Mechanical properties and macro and micro failure characteristics of freeze-thaw damage of double-fissure limestone
Author:
Affiliation:

School of National Defense Engineering, the Army Engineering University of the Chinese People’s Liberation Army

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    寒区岩体由于反复冻融导致的变形破坏是当前亟待研究和解决的前沿课题。为研究裂隙岩体的冻融损伤特性,针对不同裂隙倾角的双裂隙灰岩开展冻融循环及单轴压缩试验,得到相应的应力-应变曲线及宏观破坏特征,并采用扫描电镜分析破坏面的微观结构特征。试验结果表明:双裂隙灰岩呈明显脆性破坏,其峰值应力、弹性模量均随裂隙倾角的增大而增大,随冻融循环次数的增加而减小。峰值应变随裂隙倾角、冻融循环次数的增加而增长。宏观破坏模式主要以裂纹模式为主,片落模式为辅,破坏面与预制裂隙有关,多为张拉裂纹。裂隙倾角<90°时,贯穿裂纹经过双裂隙;裂隙倾角为90°时,贯穿裂纹仅经过预制裂隙①,片落模式仅出现在裂隙倾角<90°的条件下。预制裂隙对破坏面的微观结构特征无明显影响,微观微裂纹平均长度、累计长度和平均宽度都随冻融循环次数增加而增大。裂隙倾角的增大抑制了冻融循环带来的损伤,提高了岩体耐久性。研究成果可为寒区矿山工程开采提供重要参考价值。

    Abstract:

    The deformation and damage to cold-region rock masses caused by repeated freeze-thaw cycles constitute a pressing forefront issue in need of immediate research and resolution. To investigate the freeze-thaw damage characteristics of fractured rock formations, freeze-thaw cycling and uniaxial compression tests were conducted on bifurcated gray limestone, varying the fracture angles. These experiments yielded the corresponding stress-strain curves and macroscopic failure features, with the utilization of scanning electron microscopy to analyze the fine structural attributes of the fractured surfaces.The experimental results reveal that bifurcated gray limestone exhibits pronounced brittle failure characteristics. Both peak stress and elastic modulus increase with the enlargement of fracture angles but decrease with an increase in the number of freeze-thaw cycles. Peak strain increases with the growth of fracture angles and the frequency of freeze-thaw cycles. The predominant macroscopic failure mode primarily entails a cracking pattern, with spalling as a secondary mode. The failure surfaces are closely associated with pre-existing fractures, primarily manifesting as tensile cracks. When the fracture angle is less than 90°, penetrating fractures traverse both pre-existing fractures, whereas at a fracture angle of 90°, the penetrating fractures exclusively follow the pre-existing fracture ①. Notably, the spalling mode exclusively manifests when the fracture angle is less than 90°. Importantly, pre-existing fractures exert minimal influence on the fine structural characteristics of the fracture surfaces. Nevertheless, microscopic crack attributes, including average length, cumulative length, and average width, increase with each successive freeze-thaw cycle. The enlargement of fracture angles serves to mitigate the damage induced by freeze-thaw cycling, thereby enhancing the overall durability of the rock mass. The research outcomes provide significant reference value for cold-region mining engineering operations.

    参考文献
    [1] 刘艳章,郭赟林,黄诗冰等.冻融作用下裂隙类砂岩断裂特征与强度损失研究[J].岩土力学,2018,39(S2):62-71.DOI:10.16285/j.rsm.2018.0743.LIU Yanzhang , GUO Yunlin, HUANG Shibing, et al. Study of fracture characteristics and strength loss of crack quasi-sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2018,39(S2):62-71.DOI:10.16285/j.rsm.2018.0743.
    [2] 李长洪,肖永刚,王宇等.高海拔寒区岩质边坡变形破坏机制研究现状及趋势[J].工程科学学报,2019,41(11):1374-1386.DOI:10.13374/j.issn2095-9389.2019.05.07.004.LI Changhong, XIAO Yonggang, WANG Yu, et al. Review and prospects for understanding deformation and failure of rock slopes in cold regions with high altitude[J]. Chinese Journal of Engineering, 2019, 41(11): 1374-1386. DOI:10.13374/j.issn2095-9389.2019.05.07.004.
    [3] 侯志强. 高海拔寒区矿山边坡裂隙岩体冻融力学特性及其稳定性研究[D].北京科技大学,2022.DOI:10.26945/d.cnki.gbjku.2022.000131.Hou Zhiqiang. Research on freezing-thawing mechanical properties of fractures rock and stability of mine slope in high altitude cold region[D]. University of Science and Technology Beijing, 2022. DOI:10.26945/d.cnki.gbjku.2022.000131.
    [4] 高峰,周科平,熊信.我国高海拔寒区金属矿产资源开采现状及关键问题[J].矿业研究与开发,2022,42(10):1-5.DOI:10.13827/j.cnki.kyyk.2022.10.016.Gao Feng, Zhou Keping, Xiong Xin. Present situation and key problem of metal mineral resources exploitation in high-altitude cold region of China[J]. Mining Research and Development, 2022, 42(10): 1-5. DOI:10.13827/j.cnki.kyyk.2022.10.016.
    [5] 刘享华,张科,刘文连.荷载与冻融共同作用对多裂隙砂岩能量转化与损伤特性的影响[J].应用基础与工程科学学报,2023,31(03):715-730.DOI:10.16058/j.issn.1005-0930.2023.03.015.Liu Xianghua, Zhang Ke, Liu Wenlian. Influence of coupling action of loading and freeze-thaw cycles on the energy conversion and damage characteristics of sandstone containing multiple flaws[J]. Journal of Basic Science and Engineering, 2023, 31(03): 715-730. DOI:10.16058/j.issn.1005-0930.2023.03.015.
    [6] KRAUTBLATTER M, FUNK D, GüNZEL F K. Why permafrost rocks become unstable: a rock-ice mechanical model in time and space[J]. Earth Surface Processes and Landforms, 2013, 38(8): 876-887.
    [7] 徐拴海,李宁,王晓东等. 露天煤矿冻岩边坡饱和砂岩冻融损伤试验与劣化模型研究 [J]. 岩石力学与工程学报, 2016, 35 (12): 2561-2571. DOI:10.13722/j.cnki.jrme.2016.0945. ?? Xu Shuanhai, Li Ning, Wang Xiaodong, et al. Damage test and degradation model of saturated sandstone due to cyclic freezing and thawing of rock slopes of open-pit coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2561-2571.
    [8] 乔趁,王宇,宋正阳等. 饱水裂隙花岗岩周期冻胀力演化特性试验研究 [J]. 岩土力学, 2021, 42 (08): 2141-2150. DOI:10.16285/j.rsm.2021.0144.Qiao Chen, Wang Yu, Song Zhengyang, et al. Experimental study on the evolution characteristics of cyclic frost heaving pressure of saturated fractured granite[J]. Rock and Soil Mechanics, 2021, 42(8): 2141-2150.
    [9] 徐光苗,刘泉声.岩石冻融破坏机理分析及冻融力学试验研究[J].岩石力学与工程学报,2005(17):3076-3082.Xu Guangmiao, Liu Quansheng. Analysis of mechanism of rock failure due to freeze-thaw cycling and mechanical testing study on frozen-thawed rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2005(17): 3076-3082.
    [10] Zhou Keping, Li Bin, Li Jielin, et al. Microscopic damege and dynamic mechanical properties of rock under freeze-thaw environment[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(04): 1254-1261.
    [11] 袁小清,刘红岩,刘京平. 冻融荷载耦合作用下节理岩体损伤本构模型 [J]. 岩石力学与工程学报, 2015, 34 (08): 1602-1611. DOI:10.13722/j.cnki.jrme.2014.1342.Yuan Xiaoqing, Liu Hongyan, Liu Jingping. A damagine model of jointed rock under coupled action of freezing and thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(08): 1602-1611. DOI:10.13722/j.cnki.jrme.2014.1342.
    [12] 宋勇军,孙银伟,李晨婧等. 基于离散元法模拟的冻融砂岩细观破裂演化特征研究 [J/OL]. 岩土力学, 2023, (12): 1-15[2023-11-30] https://doi.org/10.16285/j.rsm.2023.0448. ?? Song Yongjun, Sun Yinwei, Li Chenjing, et al. Study on the meso-fracture evolution characteristics of sandstone sfter freeze-thaw cycles based on discrete element method simulation[J/OL]. Rock and Soil Mechanics: 2023, (12): 1-15[2023-11-30] https://doi.org/10.16285/j.rsm.2023.0448.
    [13] 杨更社,张全胜,蒲毅彬.冻融条件下岩石损伤扩展特性研究(英文)[J].岩土工程学报,2004(06):838-842.Yang Gengshe, Zhang Quansheng, Pu Yibin. Study on the propagation characteristics of rock damage under freeze-thaw conditions (in English)[J]. Chinese Journal of Geotechnical Engineering, 2004(06): 838-842.
    [14] 周科平,李杰林,许玉娟等.冻融循环条件下岩石核磁共振特性的试验研究[J].岩石力学与工程学报,2012,31(04):731-737.Zhou Keping, Li Jielin, Xu Yujuan, et al. Experimental study on the nuclear magnetic resonance properties of rock under freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(04): 731-737.
    [15] 张慧梅,杨更社. 冻融岩石损伤劣化及力学特性试验研究 [J]. 煤炭学报, 2013, 38 (10): 1756-1762. DOI:10.13225/j.cnki.jccs.2013.10.020.Zhang Huimei, Yang Gengshe. Experimental study of damage deterioration and mechanical properties for freezing-thawing rock[J]. Journal of China Coal Society, 2013, 38(10): 1756-1762. DOI:10.13225/j.cnki.jccs.2013.10.020.
    [16] 贾蓬,王晓帅,王德超. 饱水裂隙岩石冻融变形特性研究 [J]. 岩土力学, 2023, 44 (02): 345-354. DOI:10.16285/j.rsm.2022.0554.Jia Peng, Wang Xiaoshuai, Wang Dechao. Study on the freeze-thaw deformation characteristics of saturated fractured rocks[J]. Rock and Soil Mechanics, 2023, 44(02): 345-354. DOI:10.16285/j.rsm.2022.0554.
    [17] 秦世康,陈庆发,尹庭昌.岩石与岩体冻融损伤内涵区别及研究进展[J].黄金科学技术,2019,27(03):385-397.Qin Shikang, Chen Qingfa, Yin Tingchang. Connotation differences and research progress of the freeze-thaw damages of rock and rock mass[J]. Gold Science and Technology, 2019, 27(03): 385-397.
    [18] Tharp T M. Conditions for crack propagation by frost wedging[J]. GSA Bulletin, 1987.
    [19] 刘泉声,黄诗冰,康永水等. 裂隙岩体冻融损伤研究进展与思考 [J]. 岩石力学与工程学报, 2015, 34 (03): 452-471. DOI:10.13722/j.cnki.jrme.2015.03.003Liu Quansheng, Huang Shibing, Kang Yongshui, et al. Advance and review on freezing-thawing damage of fractured rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(03): 452-471. DOI:10.13722/j.cnki.jrme.2015.03.003.
    [20] 申艳军,杨更社,荣腾龙等. 冻融循环作用下单裂隙类砂岩局部化损伤效应及端部断裂特性分析 [J]. 岩石力学与工程学报, 2017, 36 (03): 562-570. DOI:10.13722/j.cnki.jrme.2016.0122.Shen Yanjun, Yang Gengshe, Rong Tenglong, et al. Localized damage effects of quasi-sandstone with single fracture and fracture behaviors of joint end under cyclic freezing and thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 562-570.
    [21] 裴向军,蒙明辉,袁进科等. 干燥及饱水状态下裂隙岩石冻融特征研究 [J]. 岩土力学, 2017, 38 (07): 1999-2006. DOI:10.16285/j.rsm.2017.07.020.Pei Xiangjun, Meng Minghui, Yuan Jinke, et al. Freezing-thawing characteristics of fractured rockmass under dry and saturated conditions[J]. Rock and Soil Mechanics, 2017, 38 (07): 1999-2006. DOI:10.16285/j.rsm.2017.07.020.
    [22] 路亚妮,李新平,吴兴宏. 三轴压缩条件下冻融单裂隙岩样裂缝贯通机制 [J]. 岩土力学, 2014, 35 (06): 1579-1584. DOI:10.16285/j.rsm.2014.06.009.Lu Yani, Li Xinping, Wu Xinghong. Fracture coalescence mechanism of single flaw rock specimen due to freeze-thaw under triaxial compression[J]. Rock and Soil Mechanics, 2014, 35(06): 1579-1584. DOI:10.16285/j.rsm.2014.06.009.
    [23] 贾蓬,毛松泽,孙占阳等. 冻融损伤砂岩的能量演化及分段本构模型 [J]. 中南大学学报(自然科学版), 2023, 54 (03): 908-919.Jia Peng, Mao Songze, Sun Zhanyang, et al. Energy evolution and piecewise constitutive model of freeze-thaw damaged sandstone [J]. Journal of Central South University (Science and Technology), 2023, 54(03): 908-919.
    [24] 赵建军,解明礼,余建乐等. 冻融作用下含裂隙岩石力学特性及损伤演化规律试验研究 [J]. 工程地质学报, 2019, 27 (06): 1199-1207. DOI:10.13544/j.cnki.jeg.2019-115.Zhao Jianjun, Xie Mingli, Yu Jianle, et al. Experimental study on mechanical properties and damage evolution of fractured rock under freezing-thawing action[J]. Journal of Engineering Geology, 2019, 27(06): 1199-1207. DOI:10.13544/j.cnki.jeg.2019-115.
    [25] XIAO Shu-fang, YANG Shu-bi. Rock mechanics[M]. Beijing: Geological Publishing House, 1986.
    [26] 倪智伟,吴小刚,陈浩等.分级循环加卸载试验下砂岩的力学特性研究[J].金属矿山,2021(10):21-27.DOI:10.19614/j.cnki.jsks.202110004.NI Zhiwei,Wu Xiaogang,Chen Hao,et al. Study on Mechanical Properties of Sandstone under Grading Cyclic Loading and Unloading Test[J].Metal Mine,2021(10):21-27.DOI:10.19614/j.cnki.jsks.202110004.
    [27] Mutlutürk M, Altindag R, Türk G. A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing–thawing and heating–cooling[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 237-244.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:97
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-12-17
  • 最后修改日期:2024-03-27
  • 录用日期:2024-03-27
文章二维码