基于稀疏逆协方差估计的轻量化微表情识别方法
作者:
作者单位:

1.中移杭州信息技术有限公司;2.重庆科技大学 智能技术与工程学院

中图分类号:

TP391???????

基金项目:

2021年重庆市属本科高校与中科院所属研究所合作项目:工业互联网内生安全关键技术研究与协同创新项目(HZ2021015);重庆市教委科学技术研究计划重点项目(KJZD-K202305201);重庆科技大学硕士研究生创新计划项目(ZNYKC2327)


Lightweight Micro-expression Recognition Method Based on Sparse Inverse Covariance Estimation
Author:
Affiliation:

1.CMCC (Hangzhou) Information Technology Co;2.School of Intelligent Technology and Engineering, Chongqing University of Science and Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对传统卷积网络在处理部分相关性和特征冗余方面的不足导致表情识别精度不高的问题,提出了一种轻量化微表情识别方法。通过整合稀疏逆协方差估计(SICE)和空间通道重建卷积(SCConv)来提升图像分类性能。首先,通过将SICE作为新的网络层加入到ResNet50中,模型能够更有效地识别并利用特征间的部分相关性,这有助于降低由混杂变量引起的偏差。其次,SCConv的引入替换了标准卷积层,通过空间重建单元(SRU)和通道重建单元(CRU)优化模型结构。最后,实验结果表明,相比其它网络模型,基于稀疏逆协方差估计的表情识别网络在表情识别数据的分类精度达到90.75%,显著高于其它网络模型。研究的模型参数量与计算量分别为20.13M与3.61GFlops,相比其它模型,减少了模型的参数量与计算资源消耗。这表明稀疏逆协方差估计与空间通道卷积能够在表情图像分类任务中进一步提升分类性能。

    Abstract:

    To address the limitations of traditional convolutional networks in handling partial correlations and feature redundancy, leading to suboptimal facial expression recognition accuracy, this paper proposes a lightweight micro-expression recognition method. This method enhances image classification performance by integrating Sparse Inverse Covariance Estimation (SICE) and Spatial Channel Reconstruction Convolution (SCConv). Initially, incorporating SICE as a new network layer into ResNet50 enables the model to more effectively identify and utilize partial correlations among features, helping to reduce bias caused by confounding variables. Subsequently, the introduction of SCConv, replacing standard convolutional layers, optimizes the model structure through Spatial Reconstruction Units (SRU) and Channel Reconstruction Units (CRU). Finally, experimental results indicate that the facial expression recognition network based on sparse inverse covariance estimation achieved a classification accuracy of 90.75% on facial expression data, significantly outperforming other network models. The studied model demonstrated a reduction in both parameter count and computational cost, with values of 20.13M and 3.61GFlops, respectively, when compared to other models. This suggests that sparse inverse covariance estimation combined with spatial channel convolution can further enhance classification performance in facial expression image.

    参考文献
    [1] Samek, Wojciech, et al. "Explaining deep neural networks and beyond: A review of methods and applications." Proceedings of the IEEE 109.3 (2021): 247-278.
    [2] Berg, Stuart, et al. "Ilastik: interactive machine learning for (bio) image analysis." Nature methods 16.12 (2019): 1226-1232.
    [3] Van der Walt, Stefan, et al. "scikit-image: image processing in Python." PeerJ 2 (2014): e453.
    [4] 郭庆梅,于恒力,王中训等.基于卷积神经网络的图像分类模型综述[J].电子技术应用,2023,46(09):31-38.DOI:10.16157/j.issn.0258-7998.233909
    [5] 李艳秋,朱鲁帅.基于卷积神经网络的Gray-Scott模型图像分类算法[J].应用技术学报,2023,23(04):403-409.
    [6] 张明慧,周浩,王先旺.融合Transformer和VGG网络的高光谱图像分类[J].传感器与微系统,2023,42(12):142-145+150.DOI:10.13873/J.1000-9787(2023)12-0142-04.
    [7] 安胜彪,郭昱岐,白宇等.小样本图像分类研究综述[J].计算机科学与探索,2023,17(03):511-532.
    [8] Liong, Sze-Teng, et al. "Less is more: Micro-expression recognition from video using apex frame." Signal Processing: Image Communication 62 (2018): 82-92.
    [9] 党宏社,王淼,陆馨蕊等.基于变分自编码器的人脸表情识别[J].计算机应用与软件,2023,40(07):198-202+259.
    [10] Wang, Chongyang, et al. "Micro-attention for micro-expression recognition." Neurocomputing 410 (2020): 354-362.
    [11] 张波,兰艳亭,鲜浩等.基于通道注意力机制的人脸表情识别机器人交互研究[J].电子测量技术,2021,44(11):169-174.DOI:10.19651/j.cnki.emt.2106676
    [12] 杨利,丁娇,胡天寒等.人工智能应用于心理学领域研究现状[J].电脑知识与技术,2022,18(11):1-3+6.DOI:10.14004/j.cnki.ckt.2022.0670
    [13] 张娴静,褚含冰,刘鑫.基于边缘云框架的高效安全人脸表情识别[J].计算机工程与设计,2021,42(05):1472-1478.DOI:10.16208/j.issn1000-7024.2021.05.037
    [14] 丁丁,刘文哲,盛常冲等.神经网络架构搜索研究进展与展望[J].国防科技大学学报,2023,45(06):100-131.
    [15] Indolia, Sakshi, et al. "Conceptual understanding of convolutional neural network-a deep learning approach." Procedia computer science 132 (2018): 679-688.
    [16] Williams, Donald R., and Philippe Rast. "Back to the basics: Rethinking partial correlation network methodology." British Journal of Mathematical and Statistical Psychology 73.2 (2020): 187-212.
    [17] Yang, Jing, et al. "Using deep learning to classify pediatric posttraumatic stress disorder at the individual level." BMC psychiatry 21 (2021): 1-10.
    [18] To?a?ar, Mesut, Burhan Ergen, and Zafer C?mert. "Detection of lung cancer on chest CT images using minimum redundancy maximum relevance feature selection method with convolutional neural networks." Biocybernetics and Biomedical Engineering 40.1 (2020): 23-39.
    [19] Li, Qiuyu, et al. "Facial micro-expression recognition based on the fusion of deep learning and enhanced optical flow." Multimedia Tools and Applications 78 (2019): 29307-29322.
    [20] 孙波,刘永娜,陈玖冰等.智慧学习环境中基于面部表情的情感分析[J].现代远程教育研究,2015,(02):96-103.
    [21] 宋煜青,陈红光,邓兆华等.稳定期抑郁症患者的面部表情识别特点[J].中国心理卫生杂志,2019,33(03):177-181.
    [22] Rahman, Saimunur, et al. "Learning partial correlation based deep visual representation for image classification." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.
    [23] Mikolaj, Kamil, et al. "Removing confounding information from fetal ultrasound images." arXiv preprint arXiv:2303.13918 (2023).
    [24] Li, Jiafeng, Ying Wen, and Lianghua He. "SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-19
  • 最后修改日期:2024-04-09
  • 录用日期:2024-04-16
文章二维码