弱指弹琴多指协同触键动作协调模型
DOI:
CSTR:
作者:
作者单位:

天津大学机构理论与装备设计教育部重点实验室

作者简介:

通讯作者:

中图分类号:

TP305

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Coordination model for multi-finger synchronous key-touchingin weak-finger piano playing
Author:
Affiliation:

Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education,Tianjin University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究专业弹琴人士的多指弹琴触键动作协调性,对于钢琴初学者的训练效果评价、钢琴教学机械手的人机协同控制等领域具有重要意义。目前,弹琴触键动作的特性分析主要基于经验公式进行归纳,且集中于单指触键运动。为解决经验公式适用范围局限以及多指协同触键动作协调性缺乏准确且实用的建模方法问题,提出一种基于麻雀搜索算法(SSA)和BP神经网络的建模方法。鉴于弱指的特殊性,研究聚焦于中指辅助弱指高抬指触键动作,借助Leap Motion传感器采集12名弹琴专业人士的弱指弹琴多指协同触键数据,建立了基于BP神经网络的弱指弹琴多指协同触键动作协调模型,并利用遗传算法(GA)和SSA对模型进行优化。结果表明,基于SSA-BP神经网络的协调模型具有更好的预测精度,其均方根误差为4.7226°。基于该模型,可由中指触键运动信息准确预测弱指掌指关节MCP的触键运动信息,为钢琴学习者的弱指弹琴多指协同触键动作训练提供评价方法和科学指导。

    Abstract:

    The investigation of the coordination of multi-finger synchronous key-touching in professional pianists holds significant importance in evaluating the training effectiveness for piano novices, human-machine collaboration control of piano teaching robotic hands, among other domains. Currently, the analysis of characteristics in piano key-touching actions primarily utilizes empirical formulas, focusing on single-finger key-touching movements. Addressing the limitation of the empirical formula's applicability and the lack of accurate and practical modeling methods for multi-finger synchronous key-touching actions, a modeling approach based on the sparrow search algorithm (SSA) and back propagation (BP) neural network is proposed. Given the uniqueness of the weak-finger, the research concentrates on the key-touching actions of the weak-finger assisted by the middle finger. Data were collected on multi-finger synchronous key-touching in weak-finger piano playing from twelve professional pianists utilizing a Leap Motion sensor. A coordination model, based on a BP neural network for multi-finger synchronous key-touching in weak-finger piano playing, was established and optimized using the genetic algorithm (GA) and SSA. The results demonstrate that the SSA-BP neural network-based coordination model exhibits enhanced predictive accuracy, with a root mean square error (RMSE) of 4.7226°. Based on this model, the key-touching movements of the weak-finger MCP joint can be accurately predicted from the key-touching movements of the middle finger, providing an evaluative method and scientific guidance in training for multi-finger synchronous key-touching in weak-finger piano playing among learners.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-26
  • 最后修改日期:2024-01-15
  • 录用日期:2024-04-08
  • 在线发布日期:
  • 出版日期:
文章二维码