循环荷载下不同岩性散体压实与再破碎特征
作者:
作者单位:

重庆大学 资源与安全学院

中图分类号:

X936???????


Characteristics of compaction and re-crushing of granules of different lithologies in the collapse zone under multiple mining -induced disturbance
Author:
Affiliation:

State Key Laboratory of Coal Mine Disaster Dynamics and Control,School of Resources and Safety Engineering,Chongqing University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了探究多重采动下破碎岩体压实与再破碎特征,本文开展了不同岩性散体力学试验,探究了循环荷载下散体力学参数变化规律,阐明了散体的能量演化特性与分形特征。研究结果表明:不同岩性试样中泥岩具有较低强度而最终应变量最高,造成试样输入相对较低的能量即可达到相同变形,从而对应不同岩性散体中泥岩的分形维数较大,相同荷载下泥岩散体的破碎程度较高。同时,应力加载初期,散体孔隙度衰减最快,压缩模量逐渐上升,散体此阶段迅速被压实,但存在一定阈值,当应力超过该范围后,散体能量密度变化量与孔隙度衰减量增加,压缩模量持续下降,散体颗粒大量破裂。研究结果可为揭示多重采动下垮落带岩体移动机制提供重要理论支撑。

    Abstract:

    Under the influence of multiple mining in the coal seam group, there are a large number of granules with different lithologies in the collapse zone, which have an important influence on the movement of the overlying rock strata. Therefore, in order to investigate the compaction and re-crushing characteristics of the granules under multiple mining, this research carries out the mechanical test of granules of different lithology. The variation rule of granules mechanical parameters under cyclic loading was investigated, and the energy evolution characteristics and fractal characteristics of granules were clarified. The results show that: the mudstone in different lithological samples has lower strength and the highest final strain, resulting in relatively low energy input to achieve the same deformation, which corresponds to the larger fractal dimension of the mudstone in the granules of different lithologies, and the degree of fragmentation of the mudstone granules is higher under the same loading. Meanwhile, in the early stage of stress loading, the granules porosity decayed the fastest, the compression modulus gradually increased, and the granules was compacted rapidly at this stage, but there was a certain threshold, when the stress exceeded the range, the granules energy density change and porosity decay increased, the compression modulus continued to decline, and the granules particles were ruptured in large quantities. The results of the study can provide important theoretical support for revealing the movement mechanism of the rock mass in the collapse zone under multiple mining activities.

    参考文献
    [1] YOSSIFOVA M G. Petrography, mineralogy and geochemistry of Balkan coals and their waste products[J]. International Journal of Coal Geology, 2014,122: 1-20.
    [2] ADIBEE N, OSANLOO M, RAHMANPOUR M. Adverse effects of coal mine waste dumps on the environment and their management[J]. Environmental Earth Sciences, 2013,70(4): 1581-1592.
    [3] HUGHES J, CRAW D, PEAKE B, et al. Environmental characterization of coal mine waste rock in the field; an example from New Zealand[J]. Environmental Geology (Berlin), 2007,52(8): 1501-1509.
    [4] 邹全乐, 周小莉, 王睿智, 等. 不同分级循环加卸载模式下六边形蜂窝能量演化规律[J]. 重庆大学学报, 2023,46(08): 45-55.
    [5] 邹全乐, 王鑫, 李左媛, 等. 木质素磺酸钙对固井水泥石变形破坏特性的影响及其改性机制[J]. 煤炭学报, 2023,48(04): 1606-1621.
    [6] GUO G, ZHU X, ZHA J, et al. Subsidence prediction method based on equivalent mining height theory for solid backfilling mining[J]. Transactions of Nonferrous Metals Society of China, 2014,24(10): 3302-3308.
    [7] LIU E. Deformation mechanisms of crushable blocky materials upon lateral unloading for a biaxial stress state[J]. Rock mechanics and rock engineering, 2012,45(3): 439-444.
    [8] FENG G, LI Z, HU S, et al. Distribution of gob empty space for methane drainage during the longwall mining: A case study[J]. Journal of Natural Gas Science and Engineering, 2018,60: 112-124.
    [9] WEI L, YINPING L, CHUNHE Y, et al. Permeability characteristics of mudstone cap rock and interlayers in bedded salt formations and tightness assessment for underground gas storage caverns[J]. Engineering Geology, 2015,193: 212-223.
    [10] XIA T, WANG X, ZHOU F, et al. Evolution of coal self-heating processes in longwall gob areas[J]. International Journal of heat and mass transfer, 2015,86: 861-868.
    [11] BAUER E. Hypoplastic modelling of moisture-sensitive weathered rockfill materials[J]. Acta Geotechnica, 2009,4(4): 261-272.
    [12] 张村, 赵毅鑫, 屠世浩, 等. 颗粒粒径对采空区破碎煤体压实破碎特征影响机制[J]. 煤炭学报, 2020,45(S2): 660-670.
    [13] 郁邦永, 潘书才, 魏建军, 等. 承压饱和破碎岩石颗粒破碎及渗透率演化特征研究[J]. 采矿与安全工程学报, 2020,37(03): 632-638.
    [14] 张勃阳, 林志斌, 吴疆宇, 等. 侧限条件下陷落柱破碎岩体的渗流特性研究[J]. 采矿与安全工程学报, 2020,37(05): 1045-1053.
    [15] 江宁, 尹大伟, 杨永杰, 等. 破碎矸石干湿循环长期承载变形及分形特征[J]. 采矿与安全工程学报, 2020,37(01): 176-182.
    [16] 张村, 赵毅鑫, 屠世浩, 等. 采空区破碎煤岩样压实再次破碎特征的数值模拟研究[J]. 岩土工程学报, 2020,42(04): 696-704.
    [17] 王平, 朱永建, 余伟健, 等. 软弱破碎围岩分次压实力学特性试验分析[J]. 岩土力学, 2019,40(07): 2703-2712.
    [18] 张天军, 庞明坤, 彭文清, 等. 三轴应力下胶结破碎煤岩体渗流稳定性[J]. 采矿与安全工程学报, 2019,36(04): 834-840.
    [19] 张天军, 尚宏波, 李树刚, 等. 三轴应力下不同粒径破碎砂岩渗透特性试验[J]. 岩土力学, 2018,39(07): 2361-2370.
    [20] 郁邦永, 陈占清, 戴玉伟, 等. 饱和破碎砂岩压实过程中粒度分布及能量耗散[J]. 采矿与安全工程学报, 2018,35(01): 197-204.
    [21] 张天军, 尚宏波, 李树刚, 等. 分级加载下破碎砂岩渗透特性试验及其稳定性分析[J]. 煤炭学报, 2016,41(05): 1129-1136.
    [22] 马丹, 段宏宇, 张吉雄, 等. 断层破碎带岩体突水灾害的蠕变-冲蚀耦合力学特性试验研究[J]. 岩石力学与工程学报, 2021,40(09): 1751-1763.
    [23] 谢和平. 分形几何及其在岩土力学中的应用[J]. 岩土工程学报, 1992(01): 14-24.
    [24] 郑克洪, 杜长龙, 邱冰静. 煤矸破碎粒度分布规律的分形特征试验研究[J]. 煤炭学报, 2013,38(06): 1089-1094.
    [25] 马占国, 兰天, 潘银光, 等. 饱和破碎泥岩蠕变过程中孔隙变化规律的试验研究[J]. 岩石力学与工程学报, 2009,28(07): 1447-1454.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:109
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2023-12-31
  • 最后修改日期:2024-03-05
  • 录用日期:2024-03-13
文章二维码