复杂环境载荷下海上风电机组综合性能评估
作者:
作者单位:

1.三峡大学 水电机械设备设计与维护湖北省重点实验室;2.重庆大学 高端装备机械传动国家重点实验室

中图分类号:

TH12

基金项目:

国家自然科学基金资助项目(52405067)、湖北省自然科学基金资助项目(2023AFB066)、水电机械设备设计与维护湖北省重点实验室开放基金(2021KJX10)和重庆市技术创新与应用发展专项重点项目(cstc2021jscx-jbgsX0003)


Research on Comprehensive Performance Evaluation of Wind Turbines under Complex Environmental Load
Author:
Affiliation:

1.Hubei Key Laboratory of Hydroelectric Machinery Maintenance,China Three Gorges University;2.China;3.State Key Laboratory of Mechanical Transmission for Advanced Equipment,Chongqing University

Fund Project:

National Natural Science Foundation of China(52405067), Hubei Provincial Natural Science Foundation of China(2023AFB066), the Opening Foundation of Hubei Key Laboratory of Hydroelectric Machinery Design and Maintenance (2021KJX10) and the Special Key Program for Technological Innovation and Application Development of Chongqing(cstc2021jscx-jbgsX0003)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    综合考虑海上风电机组结构特征和内外部激励,建立大型风电机组刚柔耦合多体动力学模型,提出一种基于解释结构模型和网络层次分析法的风电机组综合性能评估方法。建立风电机组综合性能评估架构,包含5个一级指标和11个二级指标;利用解释结构模型(Interpretive Structural Model, ISM)分析指标间的内在联系,建立整机综合性能评估指标多层递阶结构模型;采用网络层次分析法(Analytic Network Process, ANP)构建判断矩阵、超矩阵及极限超矩阵,求解获得整机综合性能评估指标权重,定量评估整机综合性能,比较分析两款机型的综合性能。结果表明:风电机组整机综合性能的主要影响因素为叶片长度、轴承时变可靠性、齿轮接触疲劳可靠性和单位兆瓦重量。5MW风电机组综合性能优于6.2MW风电机组。

    Abstract:

    Considering the structural characteristics and internal and external excitations of offshore wind turbines, a rigid-flexible coupled multi-body dynamic model for large wind turbines is established. A comprehensive performance evaluation method for wind turbines is proposed based on the interpretive structural model and the analytic network process. A comprehensive performance evaluation framework for wind turbines is built, including five primary indicators and 11 secondary indicators. An interpretive structural model is adopted to analyze the inherent connections between indicators. Following this, a multi-layer hierarchical structural model is produced to evaluate the comprehensive performance of wind turbines. The analytic network process is used to construct judgment matrices, hypermatrices, and extreme hypermatrices. The weights of comprehensive performance evaluation indicators are solved. Following this, the comprehensive performance of the wind turbine is quantitatively evaluated, and the comprehensive performances of the two models are compared and analyzed. The results show that the main factors affecting the comprehensive performance of wind turbines are blade length, bearing time-varying reliability, gear contact fatigue reliability and unit megawatt weight. The comprehensive performance of 5MW wind turbines is better than that of 6.2MW wind turbines.

    参考文献
    [1] Li Y, Frank P, Zhu C C. A practical reliability design method considering the compound weight and load-sharing[J]. International Journal of Approximate Reasoning, 2020, 127: 17-32.
    [2] Li Y, Zhu C C, Chen X, et al. Fatigue Reliability Analysis of Wind Turbine Drivetrain Considering Strength Degradation and Load Sharing Using Survival Signature and FTA[J]. International Journal of Approximate Reasoning, 2020, 127: 17-32.
    [3] Pan Y B, Hong R J, Chen J, et al. Performance degradation assessment of wind turbine generator gearbox based on multi-sensor information fusion[J]. Mechanism And Machine Theory, 2019, 137: 509-526.
    [4] 金晓航, 秦治伟, 郭远晶, 等. 基于改进劣化度模型的风电机组日常运行状态评估[J]. 太阳能学报, 2023, 44(1): 239-246.Jin Xiaohang, Qin Zhiwei, Guo Yuanjing, et al. Evaluation of Wind Turbines Daily Operation Conditions Based on Improved Degradation Model[J]. Acta Energiae Solaris Sinica, 2023, 44(1): 239-246.
    [5] 王志国, 马一太, 杨昭, 等. 风力发电机组性能分析的模糊综合评判方法[J]. 太阳能学报, 2004, 25(2): 177-181.Wang Zhiguo, Ma Yitai, Yang Zhao, et al. Fuzzy Comprehensive Evaluation Method of Wind Power Generation Unit[J]. Acta Energiae Solaris Sinica, 2004, 25(2): 177-181.
    [6] Yuan R, Chen R T, Li H Q, et al. Dynamic Reliability Evaluation and Life Prediction of Transmission System Of Multi-Performance Degraded Wind Turbine[J]. Computer Modeling in Engineering & Sciences, 2023, 135(6): 2331-2347.
    [7] Sun Z X, Sun H X. Health Status Assessment for Wind Turbine with Recurrent Neural Networks[J]. Mathematical Problems In Engineering, 2018, 2018.
    [8] 郭双全. 基于灰色关联度的风力发电机组健康性能评估方法研究[J]. 装备机械, 2016, 1: 7-11.Guo Shuangquan. Method Study on Health Performance Evaluation of Wind Turbine Based on Gray Correlation[J]. The Magazine on Equipment Machinery, 2016, 1: 7-11.
    [9] 陈维兴, 崔朝臣. 基于复合灰色的风力发电机组效能评估方法[J]. 机床与液压, 2020, 48(6): 162-168.Chen Weixing, Cui Chaochen. A method for effectiveness evaluation of wind turbine based on composite gray[J]. Machine Tool & Hydraulics, 2020, 48(6): 162-168.
    [10] Ramesh K, Pravin M. Performance Evaluation of Small-Scale Vertical Axis Wind Turbine by Optimized Best Position Blade Pitching at Different Tip Speed Ratios[J]. Journal of The Institution of Engineers(India); Series C, 2019, 100(6): 1005-1014.
    [11] 李海燕,李亚平,韩腾飞. 考虑自然退化与冲击的风电机可靠性评估与预防维护策略研究[J]. 工业工程, 2023, 26(3): 67-74.Li Haiyan, Li Yaping, Han Tengfei. A Reliability Assessment and Preventive Maintenance Strategy of Wind Turbines Considering Natural Degradation and Shocks[J]. Industrial Engineering Journal, 2023, 26(3): 67-74.
    [12] 文孝强, 杨剀勋, 许子昂. 基于改进K-means聚类算法与马尔可夫链的风机性能评估新方法[J]. 现代信息技术, 2023, 7(17): 66-70.Wen Xiaoqiang, Yang Kaixun, Xu Ziang. A New Method for Evaluating Wind Turbine Performance Based on Improved K-means Clustering Algorithm and Markov Chain[J]. Modern Information Technology, 2023, 7(17): 66-70.
    [13] 蒋莉, 王静. 基于多参数融合的风机健康状态评估[J]. 机械工程与自动化, 2020, 3: 10-12.Jiang Li, Wang Jing. Health Status Assessment of Wind Turbines Based on Multi-Parameter Fusion[J]. Mechanical Engineering & Automation, 2020, 3: 10-12.
    [14] Wang H, Hu Z Q, Meng X Y. Dynamic Performance Investigation of A Spar-Type Floating Wind Turbine Under Different Sea Conditions[J]. China Ocean Engineering, 2018, 32(3): 256-265.
    [15] Wen X Q. Modeling and performance evaluation of wind turbine based on ant colony optimization-extreme learning machine[J]. Applied Soft Computing Journal, 2020 94.
    [16] 杨明明. 基于机舱传递函数的风机性能评估[J]. 水电与新能源, 2020, 34(7): 37-40+48.Yang Mingming. Performance Evaluation of Wind Turbine Units based on Nacelle Transfer Function[J]. Hydropower and New Energy, 2020, 34(7): 37-40+48.
    [17] Amy H. I. L , Hung M C, Kang H Y,et al. A wind turbine evaluation model under a multi-criteria decision mking environment[J]. Energy Conversion And Management, 2012, 64: 289-300.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-28
  • 最后修改日期:2024-10-10
  • 录用日期:2024-10-28
文章二维码