基于三参数威布尔分布的锆合金疲劳寿命高精度预测方法
作者:
作者单位:

1.中国核动力研究设计院;2.中航成都无人机系统股份有限公司

中图分类号:

TG 146.414;TL 341

基金项目:

四川省自然科学基金(Grant No.2023NSFSC0979);国家重点研发计划(Grant No.2022YFB1902402)


A Method for Constructing a High-Accuracy Prediction Model for Zirconium Alloy Fatigue Life Based on the Three-Parameter Weibull Distribution
Author:
Affiliation:

1.Nuclear Power Institute of China;2.AVIC Chengdu UAS Co,Ltd

Fund Project:

Natural Science Foundation of Sichuan Province (Grant No.2023NSFSC0979);National Key Research and Development Program of China(Grant No.2022YFB1902402)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    反应堆运行时,锆合金包壳会承载一定循环载荷,在设计过程中必须要考虑包壳材料的疲劳性能,防止疲劳失效。为了更准确地拟合和预测锆合金的疲劳性能,以两种不同热处理状态锆合金疲劳试验数据为数据基础,采用概率权重矩方法得到三参数威布尔分布模型拟合得到可靠度-应力-寿命(R-S-N)曲线,并与基于传统Basquin模型的R-S-N曲线拟合结果进行对比验证,发现基于三参数威布尔分布的S-N曲线具备更高的拟合准确度,显著优于传统方法拟合结果,对锆合金疲劳性能分析与预测具有良好的适用性。

    Abstract:

    During the operation of nuclear reactors, zirconium alloy claddings are subjected to significant cyclic stresses, necessitating a comprehensive assessment of the material’s fatigue properties to prevent structural failure. This study focuses on enhancing the accuracy of predictive models for the fatigue performance of zirconium alloys by employing fatigue test data from alloys in two distinct heat-treated states. A three-parameter Weibull distribution model, formulated using the probabilistic weighted moments method, was developed to construct Reliability-Stress-Number of cycles (R-S-N) curves. These curves were rigorously compared and validated against the R-S-N curves obtained using the traditional Basquin model. The findings indicate that the S-N curves, derived from the three-parameter Weibull distribution, demonstrate superior fitting accuracy and markedly surpass the performance of those obtained through conventional methodologies. This advanced modeling approach thus proves to be highly effective and applicable for the detailed analysis and prediction of fatigue properties in zirconium alloys, offering significant implications for the design and safety of nuclear reactors.

    参考文献
    [1] Duan Z, Yang H, Satoh Y, et al. Current status of materials development of nuclear fuel cladding tubes for light water reactors[J]. Nuclear Engineering and Design, 2017, 316: 131-150.
    [2] Yang J, Steinbrück M, Tang C, et al. Review on chromium coated zirconium alloy accident tolerant fuel cladding[J]. Journal of Alloys and Compounds, 2022, 895: 162450.
    [3] 陈彭. 压水堆燃料组件和燃料元件性能分析[M]. 哈尔滨:哈尔滨工程大学出版社, 2020.
    [4] Pan R, Tang A, Wu L, et al. Recent Progress on In-Pile Behavior of Zirconium Alloy Cladding Materials[J]. 2019.
    [5] 吴璐, 邱绍宇, 伍晓勇,等. 中子辐照对锆合金显微组织的影响研究进展[J]. 重庆大学学报: 自然科学版, 2017, 40(4):11.
    [6] 陈乐,许江涛,王朋飞等.氢含量对锆合金蠕变-疲劳行为的影响及机理研究[J/OL].有色金属工程,1-13[2024-02-12].
    [7] 吴婧,杨忠波,朱其猛,刘然超,梁波.国产新锆合金疲劳性能研究[J].中国核电,2020,13(06):842-846.
    [8] 张金豹,胡铮,张金乐等.疲劳S-N曲线预测模型进展综述[J].科学技术与工程,2023,23(13):5390-5411.
    [9] Murakami Y, Takagi T, Wada K, et al. Essential structure of SN curve: Prediction of fatigue life and fatigue limit of defective materials and nature of scatter[J]. International Journal of Fatigue, 2021, 146: 106138.
    [10] 刘天奇,张广鑫,张田等.硬质金属材料多轴高周疲劳寿命快速预测方法[J].重庆大学学报,2023,46(03):94-102.
    [11] 张拓,刘坤,何爱民等.基于动态剩余S-N曲线的线性疲劳寿命预测模型[J].重庆大学学报,2023,46(03):84-93.
    [12] Barraza-Contreras J M, Piña-Monarrez M R, Molina A. Fatigue-life prediction of mechanical element by using the Weibull distribution[J]. Applied Sciences, 2020, 10(18): 6384.
    [13] Lu C G, Wei Z Q, Qiao H X, et al. Reliability life analysis of reinforced concrete in a salt corrosion environment based on a three-parameter Weibull distribution[J]. Chinese Journal of Engineering, 2021, 43(4): 512-520.
    [14] Barbosa J F, Correia J A F O, Freire Junior R C S, et al. Probabilistic SN fields based on statistical distributions applied to metallic and composite materials: State of the art[J]. Advances in Mechanical Engineering, 2019, 11(8): 1687814019870395.
    [15] 韩庆华,王鑫,芦燕等.基于三参数威布尔分布模型的铸钢及对接焊缝腐蚀疲劳寿命评估方法[J].建筑结构学报,2021,42(02):213-220+230.
    [16] Pedrosa B, Correia J A F O, Rebelo C A S, et al. Reliability of fatigue strength curves for riveted connections using normal and weibull distribution functions[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2020, 6(3): 04020034.
    [17] Chabod A, Czapski P, Aldred J, et al. Probabilistic fatigue and reliability simulation[J]. Procedia Structural Integrity, 2019, 19: 150-167.
    [18] Strzelecki P. Determination of fatigue life for low probability of failure for different stress levels using 3-parameter Weibull distribution[J]. International Journal of Fatigue, 2021, 145: 106080.
    [19] Yang X, Xie L, Liu Y, et al. A Review of Parameter Estimation Methods of the Three-Parameter Weibull Distribution[C]//2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR). IEEE, 2023: 20-31.
    [20] 严晓东,马翔,郑荣跃,等.三参数威布尔分布参数估计方法比较[J].宁波大学学报:理工版, 2005, 18(3):5.
    [21] Strzelecki P. Determination of fatigue life for low probability of failure for different stress levels using 3-parameter Weibull distribution[J]. International Journal of Fatigue, 2021, 145: 106080.
    [22] Caiza P D T, Ummenhofer T .Consideration of the runouts and their subsequent retests into S-N curves modelling based on a three-parameter Weibull distribution[J].International Journal of Fatigue, 2018, 106:70-80.
    [23] 韩庆华、王鑫、芦燕、亓立刚.基于三参数威布尔分布模型的铸钢及对接焊缝腐蚀疲劳寿命评估方法[J].建筑结构学报, 2021, 42(2):9.
    [24] 邓建,古德生,李夕兵.确定可靠性分析Weibull分布参数的概率加权矩法[J].计算力学学报, 2004, 21(5):5.
    [25] Castillo E, Fernández-Canteli A. A unified statistical methodology for modeling fatigue damage[M]. Springer Science & Business Media, 2009.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:100
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-02-12
  • 最后修改日期:2024-04-18
  • 录用日期:2024-04-23
文章二维码