风力发电机覆冰在线监测动态预警模型
作者:
作者单位:

重庆大学雪峰山能源装备安全国家野外科学观测研究站


Dynamic early warning model for online monitoring of wind turbine icing
Author:
Affiliation:

Xuefeng Mountain Energy Equipment Safety National Observation and Research Station of Chongqing University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    寒潮期间风力发电机叶片表面容易出现覆冰现象,会导致发电能力降低、设备运行不稳定甚至故障等问题。因此开展风力发电机覆冰预警方法的研究具有重要意义。本文分析SCADA运行数据库,构建基于风速、功率和温度数据的特征量,利用随机森林算法建立覆冰事件发生预警模型;通过旋转圆柱阵列装置实时监测的覆冰厚度,建立覆冰实时预警模型,实现覆冰事件发生预警和实时预警的动态机制。以重庆万宝风电场3.2MW风电机组的覆冰案例,开展覆冰预警试验验证。结果表明,覆冰事件发生预警模型的测试结果分类精确率在95%以上,并在风力发电机叶片出现覆冰情况前1小时内,多次发出覆冰事件预警;实时预警模型在风力发电机覆冰后持续发出预警,模型能够持续跟踪风力发电机覆冰环境的变化趋势;验证了动态预警模型可以为风力发电机的安全运行和有效管理提供决策依据。

    Abstract:

    Ice-covering phenomenon is easy to appear on the surface of wind turbine blades during the cold wave, which will lead to problems such as reduced power generation capacity, unstable equipment operation and even failure. Therefore, it is of great significance to carry out the research on the early warning method of wind turbine ice-covering. This paper analyzes the SCADA operation database, constructs the feature quantity based on wind speed, power and temperature data, and establishes an early warning model for the occurrence of ice-covering events by using the random forest algorithm; through the real-time monitoring of the thickness of the ice cover by the rotating cylindrical array device, it establishes a real-time early warning model for the occurrence of the ice-covering events and real-time early warning dynamic mechanism. With the case of ice cover of 3.2MW wind turbine in Chongqing Wanbao wind farm, we carry out the test verification of ice cover warning. The results show that the test results of the ice-covering event occurrence warning model have a classification accuracy rate of more than 95%, and the ice-covering event warning is issued several times within 1 hour before the ice-covering situation of the wind turbine blade; the real-time warning model continues to issue warnings after the wind turbine is covered with ice, which shows that the model is able to continue to track the trend of the wind turbine"s ice-covering environment; and it is verified that the dynamic warning model can provide a decision-making basis for the safe operation and effective management of the wind turbine. It is verified that the dynamic warning model can provide a decision-making basis for the safe operation and effective management of wind turbines.

    参考文献
    [1] 李庆民, 于万水, 赵继尧. 支撑 “双碳” 目标的风光发电装备安全运行关键技术[J]. 高电压技术, 2021, 47(9): 3047-3060.Li Qingmin, Yu Wanshui, Zhao Jiyao. Key technologies for the safe operation of wind and solar power generation equipment in support of the “Peak CO2 Emissions and Carbon Neutrality” policy[J]. High Voltage Engineering, 2021, 47(9): 3047-3060.
    [2] 任大伟, 肖晋宇, 侯金鸣, 等. 双碳目标下我国新型电力系统的构建与演变研究[J]. 电网技术, 2022, 46(10): 3831-3839.Ren Dawei, Xiao Jinyun, Hou Jinming, et al. Construction and evolution of China’s new power system under dual carbon goal[J]. Power System Technology, 2022, 46(10): 3831-3839.
    [3] 胡琴, 王欢, 邱刚, 等. 风力发电机叶片覆冰量化分析及其应用[J]. 电工技术学报, 2022, 37(21): 5607-5616.Hu Qin, Wang Huan, Qiu Gang, et al. Quantitative analysis of wind turbine blade icing and its application[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5607-5616.
    [4] 李瀚涛, 舒立春, 胡琴, 等. 考虑覆冰粗糙度影响的风力发电机叶片气动性能数值仿真[J]. 电工技术学报, 2018, 33(10): 2253-2260.Li Hantao, Shu Lichun, Hu Qin, et al. Numerical simulation of wind turbine blades aerodynamic performance based on ice roughness effect[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2253-2260.
    [5] Fakorede O, Feger Z, Ibrahim H, et al. Ice protection systems for wind turbines in cold climate: characteristics, comparisons and analysis[J]. Renewable and Sustainable Energy Reviews, 2016, 65: 662-675.
    [6] 邱刚, 舒立春, 胡琴, 等. 风力发电机叶片防冰的数值计算模型及现场试验研究[J]. 中国电机工程学报, 2018, 38 (07): 2198-2204+2235.Qiu Gang, Shu Lichun, Hu Qin, et al. Numerical anti-icing model and field experimental investigation of wind turbine blade[J]. Proceedings of the CSEE, 2018, 38(7): 2198-2204, 2235.
    [7] 胡琴, 杨大川, 蒋兴良, 等. 叶片模拟冰对风力发电机功率特性影响的试验研究[J]. 电工技术学报, 2020, 35(22): 4807-4815.Hu Qin, Yang Dachuan, Jiang Xingliang, et al. Experimental study on the effect of blade simulated icing on power characteristics of wind turbine[J]. Transactions of China Electrotechnical Society, 2020, 35(22): 4807-4815.
    [8] 舒立春, 任晓凯, 胡琴, 等. 环境参数对小型风力发电机叶片覆冰特性及输出功率的影响[J]. 中国电机工程学报, 2016, 36(21): 5873-5878, 6031.Shu Lichun, Ren Xiaokai, Hu Qin, et al. Influences of environmental parameters on icing characteristics and output power of small wind turbine[J]. Proceedings of the CSEE, 2016, 36(21): 5873-5878, 6031.
    [9] 舒立春, 梁健, 胡琴, 等. 旋转风力机的水滴撞击特性与雾凇模拟[J]. 电工技术学报, 2018, 33(4): 800-807.Shu Lichun, Liang Jian, Hu Qin, et al. Droplet impingement characteristics and rime ice accretion of rotating wind turbine[J]. Transactions of China Electrotechnical Society, 2018, 33(4): 800-807.
    [10] Hu Q, Xu X, Leng DB, et al. A method for measuring ice thickness of wind turbine blades based on edge detection[J]. Cold Regions Science and Technology, 2021, 192.
    [11] 冷冻冰. 基于图像处理的风力发电机叶片覆冰监测方法[D]. 重庆大学, 2020.Leng Dongbing. Method for monitoring icing of wind turbine blades based on Image Processing[D]. Chongqing University, 2020.
    [12] Parent O, Ilinca A. Anti-icing and de-icing techniques for wind turbines: Critical review[J]. Cold regions science and technology, 2011, 65(1): 88-96.
    [13] Evans S. Dielectric Properties of Ice and Snow–a Review[J]. Journal of Glaciology, 1965, 5(42):773-792.
    [14] 王鹏.基于超声导波方法的风机叶片覆冰检测[D].哈尔滨工业大学, 2016.Wang Peng. Icing detection of wind turbine blade using ultrasonic guide waves[D]. Harbin Institute of Technology, 2016.
    [15] Homola M C , Nicklasson P J , Sundsbo P A . Ice sensors for wind turbines[J]. Cold Regions Science & Technology, 2006, 46(2):p.125-131.HUANG Zhiwei. Composite Design and Durability Studies of TiO2 Based Superhydrophobic Coatings with Photocatalytic and Self-Cleaning[D]. Wuhan University of Technology, 2019.
    [16] Fikke S M , Jón Egill Kristjánsson, Bjørn Egil Kringlebotn Nygaard. Modern Meteorology and Atmospheric Icing[J]. 2008.
    [17] Homola M C , Wallenius T , Makkonen L , et al. The relationship between chord length and rime icing on wind turbines[J]. Wind Energy, 2010, 13(7):627-632.
    [18] Davis N , Hahmann A N , Clausen N E , et al. Forecast of Icing Events at a Wind Farm in Sweden. Journal of Applied Meteorology and Climatology, 2014, 53(2):262-281.
    [19] Dong X, Gao D, Li J, et al. Blades icing identification model of wind turbines based on SCADA data[J]. Renewable Energy, 2020, 162: 575-586.
    [20] 吴永斌, 张建忠, 袁正舾, 等. 风电场风功率异常数据识别与清洗研究综述[J]. 电网技术, 2023, 47(06): 2367-2380.Wu Yongbin, Zhang Jianzhong, Yuan Zhengxi, et al. Review on identification and cleaning of abnormal wind power data for wind farms[J]. Power System Technology, 2023, 47(06): 2367-2380.
    [21] Han S, Qiao Y, Yan P, et al. Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles[J]. Renewable Energy, 2020, 157: 190-203.
    [22] 蒋兴良,周文轩,董莉娜等. 基于旋转圆柱三电极阵列的覆冰测量方法[J/OL]. 电工技术学报, 1-12.https://doi.org/10.19595/j.cnki.1000-6753.tces.222149.
    [23] 邹瑜. 基于电容效应的覆冰检测方法[D].重庆大学,2022.Zou Yu. Capacitance effect based ice-cover detection method[D]. Chongqing University, 2022.
    [24] 李冠争, 李斌, 王帅, 等. 基于特征选择和随机森林的电力系统受扰后动态频率预测[J]. 电网技术, 2021, 45(07): 2492-2502.Li Guanzheng, Li Bin, Wang Shuaiet al. Dynamic frequency prediction of power system post-disturbance based on feature selection and random forest[J]. Power System Technology, 2021, 45(07): 2492-2502.
    [25] 马速良, 武建文, 袁洋, 等. 多振动信息下的高压断路器机械故障随机森林融合诊断方法[J]. 电工技术学报, 2020, 35(S2): 421-431.Ma Suliang, Wu Jianwen, Yuan Yang, et al. Mechanical fault fusion diagnosis of high voltage circuit breaker using multi-vibration information based on random forest[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 421-431.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:172
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-02-25
  • 最后修改日期:2024-03-01
  • 录用日期:2024-03-11
文章二维码