单轴荷载下含层理页岩损伤破坏过程及破坏模式研究
作者单位:

1.长安大学;2.中建八局西北建设有限公司


Study on damage process and failure mode of stratified shale under uniaxial load
Author:
Affiliation:

1.Chang '2.'3.an University,Xi '4.an,Shaanxi,China;5.Northwest Construction limited company of China Construction Eighth Engineering Division,Xi '

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    低渗透性是制约页岩气开采的主要因素之一,而岩体内裂隙的类型及复杂程度又是制约渗透率的关键因素,因此,加强页岩损伤破坏过程的研究对于提升页岩气开采效率而言意义重大。鉴于此,基于试验与数值模拟相结合的方法,对单轴荷载下含层理页岩的细观裂纹演化、宏观裂纹分形、损伤演化过程以及损伤影响因素等内容进行深入研究。研究结果表明:试件加载过程中,微裂纹发育整体呈“平稳上升-基本稳定-快速上升”变化趋势,就微裂纹发育阶段而言,0度和90度层理角度下,以拉伸裂纹发育为主,其占比依次为94.7和96,30度和60度层理角度下,以剪切裂纹发育为主,其占比依次为65和86.9;试件宏观破坏裂纹具有明显的分形特征,0度、30度、60度和90度层理角度下,宏观裂纹的分形维数依次为4.25、3.44、2.06和3.60;损伤发育规律受层理的影响,0度和90度层理角度下,损伤集中于基质内发育,30度和60度层理角度下,损伤则集中于层理处发育;此外,损伤受岩石的非均质性和各向异性的影响,比如,随着弹性模量方差的增加,试件的均质性减弱,同等荷载下的损伤范围增强,而随着层理刚度的增加,试件的各向异性减弱,同等荷载下的损伤范围增强。

    Abstract:

    Low permeability is one of the main factors restricting shale gas exploitation, and the type and complexity of fractures in rock mass are the key factors restricting permeability. Therefore, strengthening the study of shale damage and failure process is of great significance for improving the efficiency of shale gas exploitation. In view of this, based on the method of combining experiment and numerical simulation, the mesoscopic crack evolution, macroscopic crack fractal, damage evolution process and damage influencing factors of stratified shale under uniaxial load are deeply studied. The results show that the development of micro-cracks showed a trend of "steady rise - basically stable - rapid rise" during the loading of specimens. In terms of the stages of micro-crack development, the development of tensile cracks is the main at 0 degree and 90 degree bedding angles and its proportion is 94.7 and 96, while the development of shear cracks is the main at 30 degree and 60 degree bedding angles and its proportion is 65 and 86.9. The macroscopic failure cracks have obvious fractal characteristics, and the fractal dimensions of macroscopic cracks are 4.25, 3.44, 2.06 and 3.60 at 0 degrees, 30 degrees, 60 degrees and 90 degrees of bedding angles. The law of damage development affected by bedding. The damage is concentrated in the matrix at 0 degree and 90 degree bedding angles and is concentrated in the bedding at 30 degree and 60 degree bedding angles. In addition, the damage affected by the heterogeneity and anisotropy of the rock. For example, with the increase of the variance of the elastic modulus, the homogeneity of the specimen weakened and the damage range under the same load enhanced, while with the increase of the bedding stiffness, the anisotropy of the specimen weakened and the damage range under the same load enhanced.

    参考文献
    [1] JIN Zhe-fei, LI Wei-xin, JIN Cong-rui, et al. Anisotropic elastic, strength, and fracture properties of Marcellus shale[J]. International Journal of Rock Mechanics and Mining Sciences,2018,109.
    [2] 腾俊洋, 张宇宁, 唐建新, 等. 单轴压缩下含层理加锚岩石力学特性研究[J]. 岩土力学,2017,38(07):1974-1982+1998.TENG Jun-yang, ZHANG Yu-ning, TAGN Jian-xin, et al. Study on mechanical properties of bedded and anchored rock under uniaxial compression [J]. Rock and Soil Mechanics,2017,38(07):1974-1982+1998.
    [3] LI Cun-bao, XIE He-ping, WANG Jun. Anisotropic characteristics of crack initiation and crack damage thresholds for shale[J]. International Journal of Rock Mechanics and Mining Sciences,2020,126.
    [4] 陈天宇, 冯夏庭, 张希巍,等. 黑色页岩力学特性及各向异性特性试验研究[J]. 岩石力学与工程学报,2014,33(09):1772-1779.CHEN Tian-yu, FENG Xia-ting, ZHAGN Xi-wei, et al. Experimental study on mechanical and anisotropic properties of black shale [J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(09):1772-1779.
    [5] 王辉, 李勇, 曹树刚, 等. 含预制裂隙黑色页岩裂纹扩展过程及宏观破坏模式巴西劈裂试验研究[J]. 岩石力学与工程学报,2020,39(05):912-926.WANG Hui, LI Yong, CAO Shu-gang, et al. Experimental study on crack propagation process and macroscopic failure mode of black shale with prefabricated cracks in Brazil [J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(05):912-926.
    [6] 侯鹏, 高峰, 杨玉贵, 等. 考虑层理影响页岩巴西劈裂及声发射试验研究[J]. 岩土力学,2016,37(06):1603-1612.HOU Peng, GAO Feng, YANG Yu-gui, et al. Experimental study on Brazilian fracturing and acoustic emission of shale considering the effect of bedding [J]. Rock and Soil Mechanics,2016,37(06):1603-1612.
    [7] 杨志鹏, 何柏, 谢凌志, 等. 基于巴西劈裂试验的页岩强度与破坏模式研究[J]. 岩土力学,2015,36(12):3447-3455+3464.YANG Zhi-peng, HE Bai, XIE Ling-zhi, et al. Study on strength and failure mode of shale based on Brazilian splitting test [J]. Rock and Soil Mechanics,2015,36(12):3447-3455+3464.
    [8] LI Cun-bao, Ba?ant Z P, XIE He-ping, et al. Anisotropic microplane constitutive model for coupling creep and damage in layered geomaterials such as gas or oil shale[J]. International Journal of Rock Mechanics and Mining Sciences,2019,124.
    [9] LI Cun-bao, GAO Chao, XIE He-ping, et al. Experimental investigation of anisotropic fatigue characteristics of shale under uniaxial cyclic loading[J]. International Journal of Rock Mechanics and Mining Sciences,2020,130.
    [10] Park B, Min K B. Bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock[J]. International Journal of Rock Mechanics and Mining Sciences,2015,76.
    [11] Park B, Min K B, Thompson N, et al. Three-dimensional bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock[J]. International Journal of Rock Mechanics and Mining Sciences,2018,110.
    [12] CHONG Zhao-hui, LI Xue-hua, HOU Peng, et al. Numerical Investigation of Bedding Plane Parameters of Transversely Isotropic Shale[J]. Rock Mechanics and Rock Engineering,2017,50(5).
    [13] 蒋翔. 基于声发射的煤岩单轴压缩雪崩动力学及其应用研究[D]. 重庆大学,2017.JIANG Xiang. Avalanche Dynamics and Application of Coal-rock Uniaxial Compression Based on Acoustic Emissivity [D]. Chongqing University,2017.
    [14] WANG Miao-miao, XIAO Li-hui. The b-value analysis of bedded shale under cyclic loading tests[J]. Journal of Geophysics and Engineering,2018,15(4).
    [15] 龚囱, 李长洪, 赵奎. 红砂岩短时蠕变声发射b值特征[J]. 煤炭学报,2015,40(S1):85-92.GONG Cong, LI Chang-hong, ZHAO Kui. B value characteristics of short-time creep acoustic emission in red sandstone [J]. Journal of China Coal Society,2015,40(S1):85-92.
    [16] Ohno K, Ohtsu M. Crack classification in concrete based on acoustic emission[J]. Construction and Building Materials,2010,24(12).
    [17] Noorsuhada M N, Azmi I, Norazura M B, et al. Acoustic emission signal for fatigue crack classification on reinforced concrete beam[J]. Construction and Building Materials,2013,49.
    [18] WANG Miao-miao, TAN Cheng-xuan, MENG Jing, et al. Crack classification and evolution in anisotropic shale during cyclic loading tests by acoustic emission[J]. Journal of Geophysics and Engineering,2017,14(4).
    [19] 腾俊洋, 唐建新, 张宇宁, 等. 单轴压缩下层状含水页岩损伤破坏过程及特征[J]. 岩土力学,2017,38(06):1629-1638+1646.TENG Jun-yang, TANG Jian-xin, ZHANG Yu-ning, et al. Damage process and characteristics of lower water-bearing shale under uniaxial compression [J]. Rock and Soil Mechanics,2017,38(06):1629-1638+1646.
    [20] CHEN Hong-ran, DI Qing-yun, ZHANG Wen-xiu, et al. Effects of bedding orientation on the failure pattern and acoustic emission activity of shale under uniaxial compression[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,2021,7(1).
    [21] 申海萌, 李琦, 李霞颖, 等. 川南龙马溪组页岩不同应力条件下脆性破坏特征室内实验与数值模拟研究[J]. 岩土力学,2018,39(S2):254-262.SHEN Haimeng, LI Qi, LI Xiaying, et al. Laboratory experiment and numerical simulation on brittle failure characteristics of Longmaxi Formation shale under different stress conditions in southern Sichuan [J]. Rock and Soil Mechanics,2018,39(S2):254-262.
    [22] 侯振坤, 杨春和, 王磊, 等. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学,2016,37(02):407-414.HOU Zhen-kun, YANG Chun-he, WANG Lei, et al. Physical simulation test and fracture extension law analysis of hydraulic fracturing in large size true triaxial horizontal shale well [J]. Rock and Soil Mechanics,2016,37(02):407-414.
    [23] Rybacki E, Reinicke A, Meier T, et al. What controls the mechanical properties of shale rocks? – Part I: Strength and Young''s modulus[J]. Journal of Petroleum Science and Engineering,2015,135.
    [24] Stephen J B. Contrast of elastic properties between rock layers as a mechanism for the initiation and orientation of tensile failure under uniform remote compression[J]. John Wiley Sons, Ltd,2003,108(B8).
    [25] Amann F, Button E A, Evans K F, et al. Experimental Study of the Brittle Behavior of Clay shale in Rapid Unconfined Compression[J]. Rock Mechanics and Rock Engineering,2011,44(4).
    [26] 沈功田, 耿荣生, 刘时风. 声发射信号的参数分析方法[J]. 无损检测,2002(02):72-77.SHEN Gong-tian, GENG Rong-sheng, LIU Shi-feng. Parameter Analysis Method of Acoustic Emission Signal [J]. Nondestructive Testing,2002(02):72-77.
    [27] 王登科, 魏强, 魏建平, 等. 煤的裂隙结构分形特征与分形渗流模型研究[J]. 中国矿业大学学报, 2020, 49(1):103-109.WANG Deng-ke, WEI Qiang, WEI Jian-ping, et al. Fractal characteristics of fracture structure and fractal seepage model of coal[J]. Journal of China University of Mining .Technology, 2020, 49(1): 103-109.
    [28] 张艳博, 徐跃东, 刘祥鑫, 等. 基于 CT 的岩石三维裂隙定量表征及扩展演化细观研究[J]. 岩土力学, 2021,42(10): 2659-2671.ZHANG Yan-bo, XU Yue-dong, LIU Xiang-xin, et al. Quantitative characterization and mesoscopic study of propagation and evolution of three-dimensional rock fractures based on CT[J]. Rock and Soil Mechanics, 2021, 42(10): 2659-2671.
    [29] 付裕, 陈新, 冯中亮. 基于 CT 扫描的煤岩裂隙特征及其对破坏形态的影响[J]. 煤炭学报, 2020, 45(2): 568-578.FU Yu, CHEN Xin, FENG Zhong-liang. Characteristics of coal-rock fractures based on CT scanning and its influence on failure modes[J]. Journal of China Coal Society, 2020, 45(2): 568-578.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:106
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-02-26
  • 最后修改日期:2024-03-15
  • 录用日期:2024-04-07
文章二维码