考虑风-浪耦合作用的近岸风参数分布特征
作者:
作者单位:

1.长安大学 公路学院 陕西西安;2.中国铁路西安局集团有限公司

中图分类号:

O357.5

基金项目:

国家自然科学基金面上项目(51978077);


The distribution characteristics of near-shore wind parameters considering wind-wave coupling
Author:
Affiliation:

1.School of Highway,Chang'2.'3.an University,Xi'4.an;5.China Railway Xi'6.an Group Co.,Ltd

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为研究近岸处风参数的分布特性,基于CFD(computational fluid dynamics)技术,建立了二维几何模型,针对二维风作用在平静水面情况,采用SST k-ω湍流模型以及多相流模型对其风参数的分布特性进行了数值模拟,开展了发展距离、水深、来流风速以及水底地形的坡度变化对风参数分布特征的变化特性分析。结果表明:当发展距离在60m以内时,风速在距离水面较近处大于入口风速,呈现加速现象;当超过60m后,风速随着位置高度的增加而增加,达到一定高度后,速度大小保持不变;坡度变化对风参数的分布特征无影响;水深对风参数特征有着很强的相关性,水深的增加会导致梯度风高度呈现非线性增加,同时对风速有着较大的影响;入口风速大小对梯度风高度以及风结构形式无影响,但会影响距离入口较近处的加速效果。

    Abstract:

    To study the distribution characteristics of wind parameters near the shore, a two-dimensional geometric model is established based on CFD (computational fluid dynamics) technology. Because of the two-dimensional wind action on a calm water surface, the SST k-ω turbulence model and multiphase flow model are adopted to numerically simulate the distribution characteristics of wind parameters. The changes in development distance, water depth, incoming wind speed, and slope of underwater terrain on the distribution characteristics of wind parameters are analyzed. The results show that when the development distance is less than 60m, the wind speed near the water surface is larger than the inlet wind speed, showing an accelerating phenomenon. When the wind speed exceeds 60m, the wind speed increases with the increase of the position height, and the speed remains unchanged after reaching a certain height. The variation of slope does not affect the distribution characteristics of wind parameters. Water depth has a strong correlation with wind parameter characteristics. The increase in water depth will lead to a nonlinear increase in gradient wind height and has a great influence on wind speed. The inlet wind speed does not affect the gradient wind height and wind structure but will affect the acceleration effect near the inlet. The change of wind attack Angle has a strong correlation with inlet wind speed and water depth. With the increase of wind speed, the change of wind attack Angle is more obvious. Generally, when the wind speed increases, the wind attack Angle will change greatly.

    参考文献
    [1] SENGUPTA A, SARKAR P P. Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(3): 345–365. DOI:10.1016/j.jweia.2007.09.001.
    [2] 李庆杰, 洪新, 曹雪峰, 等. 不同风应力拖曳系数对北海区台风风暴潮模拟精度的影响[J]. 海南热带海洋学院学报, 2023, 30(2): 92–100.LI Q J, HONG X, CAO X F, et al. Effects of different wind stress drag coefficients on simulation accuracy of typhoon storm surge in beihai region[J]. Journal of Hainan Tropical Ocean University, 2023, 30(2): 92–100.(in Chinese)
    [3] 李加武,徐润泽,党嘉敏等.喇叭口河谷地形基本风特性实测[J].长安大学学报:自然科学版, 2020, 40(6):10. DOI:10.19721/j.cnki.1671-8879.2020.06.005.LI J W, XU R Z, DANG J M . Field measurement of basic wind characteristics of trumpet river valley. [J]. Journal of Chang’an University(Natural Science Edition). 2020, 40(6):10 DOI:10.19721/j.cnki.1671-8879.2020.06.005(in Chinese)
    [4] 郝键铭,赵朔浛,辛凌风等. 广东沿海地区桥址风场特性实测研究.[J] 振动工程学报,2024 (网络首发) https://link.cnki.net/urlid/32.1349.tb.20240202.0944.002HAO J M, ZHAO S H, XIN L F, et al. Study on wind characteristics of bridge sites in coastal areas of Guang?dong Province based on measured data. Journal of Vibration Engineering. 2024https://link.cnki.net/urlid/32.1349.tb.20240202.0944.002
    [5] 李永乐, 房忱, 向活跃. 风-浪联合作用下大跨度桥梁车-桥耦合振动分析[J]. 中国公路学报, 2018, 31(7): 119–125.LI Y L, FANG C, XIANG H Y. Coupled vibration analysis of vehicle-bridge for long-span bridge under wind and wave[J]. China Journal of Highway and Transport, 2018, 31(7): 119–125.(in Chinese)
    [6] 房忱,李永乐,向活跃.波浪作用下跨海大桥列车走行性研究[J].西南交通大学学报, 2017, 52(6):7.DOI:10.3969/j.issn.0258-2724.2017.06.005.FANG C, LI Y L, XIANG H Y. Study of train running performance under wave load for cross-sea bridge[J]. Journal of Southwest Jiaotong University, 2017, 52(6):7. DOI:10.3969/j.issn.0258-2724.2017.06.005.(in Chinese)
    [7] CUOMO G, SHIMOSAKO K I, TAKAHASHI S. Wave-in-deck loads on coastal bridges and the role of air[J]. Coastal Engineering, 2009, 56(8):793-809. DOI:10.1016/j.coastaleng.2009.01.005.
    [8] ZHU J, ZHANG W. Numerical Simulation of Wind and Wave Fields for Coastal Slender Bridges[J]. Journal of Bridge Engineering, 2016:04016125. DOI:10.1061/(ASCE)BE.1943-5592.0001002.
    [9] ZHU J, ZHANG W. Probabilistic fatigue damage assessment of coastal slender bridges under coupled dynamic loads[J]. Engineering Structures, 2018, 166(JUL.1):274-285. DOI:10.1016/j.engstruct.2018.03.073.
    [10] 李国亮,刘钊,李学民,等.杭州湾大桥南岸超长施工栈桥设计中风、浪、流荷载的确定[J].公路交通科技, 2007, 24(1). DOI:10.3969/j.issn.1002-0268.2007.01.024.LI G L, LIU Z, LI X M, et al. Determination of Design Loads of Wind, Wave and Flow for the Construction Trestle of Hangzhou Bay Bridge[J]. Journal of Highway and Transportation Research and Development, 2007, 24(1).DOI:10.3969/j.issn.1002-0268.2007.01.024.(in Chinese)
    [11] 程赵德, 朱良生, 罗天翔. 不规则波在斜坡地形破碎区波高分布的数值试验研究[J]. 水运工程, 2022, (1): 7-12+65.CHENG Z D, ZHU L S, LUO T X. Numerical experiment study on wave height distribution of irregular wave in slope topography breaking area[J]. Port Waterway Engineering, 2022, (1): 7-12+65.(in Chinese)
    [12] XU Zhuyun, HANGAN Horia,. Scale, boundary and inlet condition effects on impinging jets[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(12):2383-2402. DOI:10.1016/j.jweia.2008.04.002.
    [13] DEIKE L. Mass Transfer at the Ocean–Atmosphere Interface: The Role of Wave Breaking, Droplets, and Bubbles[J]. Annual Review of Fluid Mechanics, 2022, 54(1): 191–224. DOI:10.1146/annurev-fluid-030121-014132.
    [14] 王岳峰. 深水航道工程对长江口波浪影响研究及多年一遇波浪要素计算[D]. 上海海洋大学, 2017.WANG Y F. Study on the Influence of Deepwater Channel Project on the Wave in the Yangtze River Estuary and the Calculation of Wave Elements in Years[D]. Shanghai Ocean University, 2017.(in Chinese)
    [15] BERKHOFF J C W. Computation of combined refraction -diffraction[A]. Proc of the 13th Conf on Coastal Engineering: Vol. 1.[C]. New York: ASCE, 1972, 471)490.
    [16] 肖文军, 丁平兴, 胡克林. 潮汐和流影响下长江口波浪场数值计算[J].海洋工程 2008, 26(4):45–52.XIAO W J, DING P X, HU K L. Numerical calculation of wave fields with tide and currents in Yangtze estuary[J]. The Ocean Engineering 2008, 26(4):45–52.(in Chinese)
    [17] LIU Si, ZHANG Yongliang, LIU Shuxue, et al. The physical simulation of wave groups and their variations in a wave flume[J]. Acta Oceanologica Sinica, 2013, 32(11): 68–73. DOI:10.1007/s13131-013-0379-0.
    [18] 张卓,宋志尧,孔俊.波流共同作用下流速垂线分布及其影响因素分析[J].水科学进展,2010,21(06):801-807.ZHANG Z, SONG Z Y, KONG J. Wave-current interaction effects on velocity profiles and influencing factor analysis[J]. Advances in Water Science, 2010, 21(6): 801–807.(in Chinese)
    [19] MATHISEN P P, MADSEN O S .Waves and currents over a fixed rippled bed: 3. Bottom and apparent roughness for spectral waves and currents[J].Journal of Geophysical Research Oceans, 1999, 104(C8):18447-18461. DOI:10.1029/1999JC900114.
    [20] KEMP P H, SIMONS R R. The interaction between waves and a turbulent current: waves propagating with the current[J].Journal of Fluid Mechanics, 1982, 116. DOI:10.1017/S0022112082000445.
    [21] 勾鸿量,刘曙光,匡翠萍.曹妃甸工程对海域波浪场的影响[J].华北水利水电学院学报, 2009, 30(05):17-22. DOI:10.19760/j.ncwu.zk.2009.05.005.
    [22] CAO SHUYANG, SUN, et al. Numerical study of wind profiles over simplified water waves[J]. Wind Structures, 2015.
    [23] 尤韩炜,陈昌萍.海面上下击暴流风场特性模拟及分析[J].厦门大学学报(自然科学版),2022,61(04):572-578.YOU H W, CHEN C P. Simulation and analyses of the wind-field characteristics of downburst above sea surface[J] Journal of Xiamen University (Natural Science), 2022, 61(4): 572–578. (in Chinese)
    [24] [1]孙丽明,曹曙阳,李明等.考虑波浪形底面影响的边界层风场大涡模拟[J].空气动力学学报,2014,32(04):534-543.SUN L M, CAO S Y, LI M, et al. Large-eddy simulation of fully developed turbulent flow over a wavy surface[J]. Acta Aerodynamica Sinica, 2014, 32(4): 534-543. doi: 10.7638/kqdlxxb-2012.0172. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:83
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-02-26
  • 最后修改日期:2024-05-23
  • 录用日期:2024-05-24
文章二维码