双材料含椭圆热夹杂的平面应变问题解析解
DOI:
CSTR:
作者:
作者单位:

1.重庆大学航空航天学院;2.韦恩州立大学生物医学工程系;3.重庆大学航空航天学院,机械传动国家重点实验室

作者简介:

通讯作者:

中图分类号:

O34

基金项目:

考虑材料微观结构的复杂接触分析研究


A closed-form solution to an elliptic cylindrical thermal inclusion in a bi-material under plane strain
Author:
Affiliation:

1.College of Aerospace Engineering,Chongqing University;2.College of Aerospace Engineering,Chongqing University;3.Department of biomedical engineering,Wayne State University;4.a. College of Aerospace Engineering;5.b. State Key Laboratory of Mechanical Transmissions, Chongqing University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文以含椭圆热夹杂的结合双材料为研究对象,对其平面应变问题进行解析求解和算例讨论。根据Eshelby 提出的夹杂分析方法,推导了椭圆夹杂受热本征应变作用引起的弹性场封闭解析解。受Dundurs 参数启发,当前解析解引入了一个新的材料参数(范围从-1到1)和五个类张量表达式来简洁表达,使之便于实际应用。针对典型的圆形夹杂问题,本文解析解在形式上可以得到极大简化,且根据得到的解析解给出了双材料界面上位移、应变和应力的跳跃条件。通过调整双材料的杨氏模量和泊松比,当前解可以退化为全平面或半平面含椭圆热夹杂的解析解。本文的数值解与已发表文献中的数值解的一致性证实了本文推导解析解的正确性。

    Abstract:

    This article focuses on the analysis and solution of the plane strain problem of bi-material containing an elliptical cylindrical thermal inclusion. Following the inclusion analysis method proposed by Eshelby, we derive closed-form analytical solutions for the elastic field induced by an elliptical thermal inclusion. Inspired by Dundurs' parameters, we introduce a new material parameter (ranging from -1 to 1) and five tensorial structured expressions to succinctly represent the current analytical solution, facilitating practical applications. For typical circular inclusion problems, our analytical solution can be greatly simplified, and we derive jump conditions for displacement, strain, and stress at the bonded interface of the bi-material. By adjusting Young's moduli and Poisson's ratios of the bi-material, the current solutions can degenerate into analytical solutions for a full or half-plane containing a thermal elliptical inclusion. The consistency of these solutions with previously published analytical solutions for specific cases, along with the numerical solutions presented in this article matching those in the literature, confirms the correctness of the derived analytical solutions in this study.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-01
  • 最后修改日期:2024-04-19
  • 录用日期:2024-04-23
  • 在线发布日期:
  • 出版日期:
文章二维码