优化代价函数的车辆约束路径规划算法
作者:
作者单位:

1.重庆理工大学 计算机科学与工程学院;2.重庆大学 自动化学院

中图分类号:

V249.32

基金项目:

中国重庆市自然科学基金(批准号:cstc2018jcyjAX0835)


Vehicle Constrained Path Planning Algorithm with Optimized Cost Function
Author:
Affiliation:

1.Chongqing University of Technology;2.Chongqing University College of Automation

Fund Project:

Natural Science Foundation of Chongqing Municipality in China (Grant numbers cstc2018jcyjAX0835)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对多障碍物场景下移动机器人路径规划存在无解、转向速度状态变化大和路径与障碍物距离过近问题,提出了一种基于代价函数改进的车辆约束路径规划算法。该方法以车辆约束路径规划算法Hybrid A*为基础算法,以其代价函数为原始代价函数。建立双起点和双终点的搜索过程,形成双向搜索,降低路径搜索时间。引入转向约束,降低传统Hybrid A*算法的转向速度状态变化。引入距离约束,降低危险障碍边缘的节点的优先级。实验证明,相较于传统车辆约束Hybrid A*算法,改进的Hybrid A*算法平均路径搜索时间降低了12.043%,转向速度状态变化降低了16.623%,与危险障碍边缘相近的节点优先级降低了25%。这一系列实验结果成功改善了传统Hybrid A*算法在规划路径算法,为多障碍物场景下移动机器人路径规划提供了有效的解决方案。

    Abstract:

    Aiming at the problems of unsolved mobile robot path planning in multi-obstacle scenarios, large change of steering speed state and too close distance between path and obstacles, a vehicle constrained path planning algorithm based on the improvement of cost function is proposed. The method takes the vehicle constrained path planning algorithm Hybrid A* as the base algorithm and its cost function as the original cost function. A dual start and dual end search process is established to form a two-way search and reduce the path search time. Introduce steering constraints to reduce the steering speed state change of the traditional Hybrid A* algorithm. Introduce distance constraints to reduce the priority of dangerous edge nodes. The experiments demonstrate that compared to the traditional vehicle constraint Hybrid A* algorithm, the improved Hybrid A* algorithm reduces the average path search time by 12.043%, the steering speed state change by 16.623%, and the priority of nodes close to the danger edge by 25%. This series of experimental results successfully improves the traditional Hybrid A* algorithm in planning path algorithm and provides an effective solution for mobile robot path planning in multi-obstacle scenarios..

    参考文献
    [1] 叶强强,郑明魁,邱鑫.基于ROS的室内自主导航移动机器人系统实现[J].传感器与微系统,2022,41(02):90-93
    [2] 杨明亮, 李宁. 改进A~*算法的移动机器人路径规划[J]. 机械科学与技术, 2022, 41 (05): 795-800.
    [3] 汪繁荣, 杜力, 徐光辉. 基于改进蚁群算法的分布式多机器人协同路径规划[J]. 中南民族大学学报(自然科学版), 2023, 42 (05): 650-657.
    [4] 张伟民,张月,张辉.基于改进A~*算法的煤矿救援机器人路径规划[J].煤田地质与勘探,2022,50(12):185-193.
    [5] Petereit J., Emter T., Frey C.w., et al. Application of Hybrid A* to an Autonomous Mobile Robot for Path Planning in Unstructured Outdoor Environments[A]. 7th German Conference on Robotics[C].Munich, Germany, 2012: 1-6.
    [6] Mohammad A.A.H,Liu Z.,Zhang Y.Real-Time Path Planning and Following for Nonholonomic Unmanned Ground Vehicles[A].2017 International Conference on Advanced Mechatronic Systems[C].Xiamen, 2017:202-207.
    [7] Zhang S., Chen Y.,Chen S., et al. Hybrid A*-Based Curvature Continuous Path Planning in Complex Dynamic Environments[A].2019 IEEE Intelligent Transportation Systems Conference[C].Auckland,New Zealand, 2019: 1468-1474.
    [8] Saeid S., Duong-Van N.,Klaus-Dieter K. Guided Hybrid A*-Star Path Planning Algorithm for Valet Parking Applications[A]. 2019 5th International Conference on Control, Automation and Robotics[C].Beijing, China, 2019:570-575.
    [9] Francesco E., Jorrit G.,Arjan T.,et al.Hybrid Path Planning for Non-Holonomic Autonomous Vehicles: An Experimental Evaluation[A]. 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems[C]. Naples,2017:25-30.
    [10] 周启票. 一种基于改进混合A*算法的无人船路径规划算法[J]. 电脑编程技巧与维护, 2023, (09): 111-113.
    [11] 支奕琛, 谷玉海, 徐小力, 龙伊娜. 改进鸽群和Morphin算法的混合路径规划算法研究[J]. 机械设计与制造, 1-9[2024-03-01].
    [12] Qi D ,Hao S ,Fupeng C , et al.An Optimized FPGA-Based Real-Time NDT for 3D-LiDAR Localization in Smart Vehicles[J].IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS,2021,68(9):3167-3171.
    [13] 蔡志宏,赵慧,周亮等.一种多线激光雷达室外小范围导航算法设计[J].机械设计与制造,2022,(04):258-261
    [14] Li S ,Li W .P‐2.10: Design and Implementation of Mobile Robot Path Planning System Based on SLAM Technology[J].SID Symposium Digest of Technical Papers,2023,54(S1):513-516.
    [15] 刘红.融合改进A~*算法和人工势场法的移动机器人混合路径规划[D].燕山大学,2023.
    [16] 杨瑶, 付克昌, 蒋涛, 向泽波, 刘甲甲. 改进A~*算法的智能车路径规划研究[J]. 计算机测量与控制, 2020, 28 (10): 170-176.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:124
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-03-01
  • 最后修改日期:2024-06-05
  • 录用日期:2024-08-14
文章二维码