不均匀覆冰导线脱冰塔线体系动力响应特征参数
作者:
作者单位:

1.重庆大学航空航天学院;2.国网经济技术研究院有限公司;3.中国电力工程顾问集团西南电力设计院有限公司

中图分类号:

TM75???????

基金项目:

国家电网公司科技项目(5200-202126072A-0-0-00)


Dynamic response characteristics of tower-line systems after ice-shedding from conductors with non-uniform icing
Author:
Affiliation:

1.College of Aerospace Engineering, Chongqing University;2.State Grid Economic and Technological Research Institute Co., LTD;3.Southwest Electric Power Design Institute Co., LTD. of China Power Engineering Consulting Group

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    覆冰厚度随海拔高度变化导致导线上覆冰不均匀。给出导线覆冰厚度随高度变化和不均匀脱冰模型,利用附加单元法实现导线不均匀覆冰和脱冰塔线体系动力响应数值模拟方法。建立500kV四分裂线路典型孤立档和连续档塔线耦合体系有限元模型,研究导线不均匀覆冰脱冰后塔线体系的动力响应特征,分析杆塔载荷冲击系数、导线最大挂点支反力、纵向不平衡张力、脱冰跳跃高度等特征参数随线路档距、高差比和覆冰厚度的变化规律,以及极端情况下杆塔的应力和强度,为不均匀覆冰冰区输电杆塔塔头设计提供重要的依据。

    Abstract:

    Variation of ice thickness with altitude results in non-uniform icing distribution on conductor lines. The non-uniform icing and ice-shedding are defined and numerical simulation method for the dynamic response of tower-line system after ice-shedding from conductor with non-uniform ice are carried out with additional element method. The finite element models of typical isolated and multi-spans tower-line coupling systems of 500kV quad-bundle transmission lines are established, and the dynamic responses of the tower-line systems after ice-shedding from the conductor lines with non-uniform icing are numerically simulated. The dynamic response characteristics of the tower-line systems, including the stress distribution and load impact factor of the towers, the maximum reaction force at the connecting points, longitudinal unbalanced tension and jump height of the conductor lines after ice-shedding, vary with structural, icing and ice-shedding parameters are analyzed. The strength of towers under extreme conditions is also analyzed. The obtained results provide important instructions for the design of tower heads in the transmission lines in ice zones.

    参考文献
    [1] 杨亚东.渝东南地区输电线路覆冰划分依据分析[J].河南科技,2021,40(34):147-149.
    [2] 李清华, 孟洁, 李劲松, 刘月丽, 常清, 姜敏, 郭栋.山西省不同重现期下电线覆冰厚度空间分布及区划[J].干旱气象,2022,40(01):156-165.
    [3] Fekr M R, Mcclure G. Numerical modelling of the dynamic response of ice-shedding on electrical transmission lines. Aspheric Research, 1998, 46(1-2): 1-11.
    [4] Yan B, Chen K, Guo Y, Liang M, Yuan Q. Numerical simulation study on jump height of iced transmission lines after ice shedding [J]. IEEE Transactions on Power Delivery, 2013, 28(1): 216-225.
    [5] 王德千, 严波, 黄桂灶, 黄兴, 李美峰.输电导线脱冰跳跃高度实用简化计算公式[J].重庆大学学报,2020,43(02):60-67.
    [6] 张健, 张宇卓, 王金锁, 褚忠凯, 孙清, 周文武, 江岳. 750kV输电导线不均匀覆冰弧垂变化与脱冰跳跃研究[J]. 应用力学学报, 2023, 40 (03): 558-570.
    [7] 王昕, 楼文娟. 多跨输电线路脱冰动力响应研究. 工程力学, 2011, 28(1): 226-232.
    [8] 杨春侠, 何雯琦, 刘慧聪, 崔鸿知, 张梓建.不均匀覆冰下连续档架空输电线路脱冰动力响应分析[J/OL].工业建筑:1-10[2024-01-03]. http://kns.cnki.net/kcms/detail/11.2068.TU.20230719.1857.004.html.
    [9] Yang F, Yang J, Han J, Han J, Fu D. Numerical simulation on the HV transmission tower-line system under ice shedding[C]// Transmission Distribution Conference Exposition: Asia and Pacific, 2009. IEEE, 2009.
    [10] 杨风利, 杨靖波, 付东杰, 韩军科. 塔线系统脱冰跳跃动力响应分析. 振动工程学报, 2010, 23(01): 86-93.
    [11] 程皓月.重冰区超高压输电塔线体系安全性研究[D].重庆大学,2011.
    [12] 姚陈果, 毛峰, 许道林, 刘孝全, 周泽宏, 崔玉家.不均匀覆冰输电塔线体系力学特性[J].高电压技术,2011,37(12):3084-3092.
    [13] 张瑚, 吕健双, 汪峰, 柏晓路, 罗振宇.基于塔线体系的中冰区分裂导线不均匀脱冰跳跃研究[J].水电能源科学,2021,39(10):204-207.
    [14] 万小东, 霍锋, 张骁, 赵超, 孙清. 1000 kV复合横担输电塔线体系覆冰脱落动力响应分析[C]//2020年工业建筑学术交流会论文集(下册).[出版者不详],2020:370-374.
    [15] Wen Y, Hu Z, Mao X, Zeng H, Yang T, Zhao C. Comparison for mechanical properties of transmission towers in uniform and non-uniform icing condition under micro-topography [C]//2021 International Conference on Advanced Electrical Equipment and Reliable Operation (AEERO). IEEE, 2021: 1-5.
    [16] DL/T 5158-2021,电力工程气象勘测技术规程[S].
    [17] International Electrotechnical Commission. IEC 60826: Design criteria of overhead transmission lines[J]. Geneva, Switzerland: IEC. 0, 2017, 20: 40-60.
    [18] 王黎明, 曹露, 高亚云, 王琼, 李庆峰.输电线路非均匀脱冰严重工况的规律[J].高电压技术,2018,44(08):2442-2449.
    [19] Barbieri N,Oswaldo Honorato de Souza Jinior,Barbieri R. Dynamical analysis of transmission line cables. Part 2—damping estimation [J]. Mechanical Systems and Signal Processing,2004,18(3):671-681.
    [20] Lilien J L State of the art of conductor galloping, A complementary document to "Transmission line Reference book-Wind-induced conductor motion Chapter 4: Conductor galloping" based on EPRI research project 792, 2005, P.43-46.
    [21] Wu K, Yan B, Yang H, Lu J, Xue Z, Liang M, Teng Y. Dynamic Response Characteristics of Isolated-Span Transmission Lines After Ice-Shedding[J]. IEEE Transactions on Power Delivery, 2023,38(5):3519-3530
    [22] Wu K, Yan B, Yang H, Liu Q, Lu J, Liang M. Characteristics of multi-span transmission lines following ice-shedding[J]. Cold Regions Science and Technology, 2024, 218: 104082.
    [23] 张殿生. 电力工程高压送电线路设计手册[M]. 2版. 北京: 中国电力出版社, 2003.18
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:118
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-03-03
  • 最后修改日期:2024-03-26
  • 录用日期:2024-03-27
文章二维码