基于自适应多营养目标的饮食推荐系统研究
作者:
作者单位:

1.天津大学 微电子学院 多媒体处理研究实验室;2.天津市第三中心医院 营养科

中图分类号:

TP399???????

基金项目:

国家自然科学基金项目(61771338),天津市重大科技专项资助项目(18ZXRHSY00190)。


Dietary Recommendation System Based on Adaptive Multi-nutrient Goals
Author:
Affiliation:

1.Multimedia Processing Research Laboratory, School of Microelectronics, Tianjin University.;2.Department of Nutriology, Tianjin Third Central Hospital

Fund Project:

National Natural Science Foundation of China(No.61771338),The Tianjin Key Research Project(No.18ZXRHSY00190)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为实现便捷、个性化的健康饮食,一种针对中国菜肴的饮食推荐方案被提出。首先,通过自建数据库训练能进行三餐分类的ResNet-18神经网络模型,得到2167道中国菜肴的三餐置信度作为推荐依据。然后构建优化算法数学模型,将菜肴的营养素、食材、类别等信息抽象为决策变量,营养与饮食习惯等目标设为约束条件,利用自适应的Gurobi优化器来计算推荐菜肴及其克数的最优解。实验证明,系统可在三个层面达成设定目标:在营养素层面,能够满足健康用户或30种慢性病人的19种营养素的摄入指标;在食材层面,能够确保推荐食材的多样性,完成喜好菜肴筛选与忌口成分规避;在菜肴层面,能够实现菜肴种类搭配和三餐分别推荐的功能。

    Abstract:

    In order to make healthy and personalized diets conveniently, a dietary recommendation system for Chinese cuisine is proposed. Firstly, the ResNet-18 neural network model that can classify three meals was trained through the self-built database, and the three-meal confidence of 2167 Chinese dishes was obtained as the basis for recommendation. Then, the optimization model was constructed, where the information of nutrients, ingredients and categories of dishes were abstracted as decision variables, and the objectives of nutrition and eating habits were set as constraints. The optimal solution of the recommended dishes and their grams was calculated by using the adaptive Gurobi optimizer. Experiments show that the system can achieve the set goals at three levels: at the nutrient level, it can meet the intake targets of 19 nutrients for healthy users or 30 chronic patients; At the level of food ingredients, it can ensure the food diversity, complete the selection of favorite dishes and the avoidance of taboo ingredients; At the dish level, it can realize the function of pairing dishes and recommending three meals respectively.

    参考文献
    [1] World Health Organization. Noncommunicable Diseases[R]. (2023-09-16)[2024-01-22]. https://www.who.int/zh/news-room/fact-sheets/detail/noncommunicable-diseases
    [2] World Health Organization. Healthy Diet[R]. (2018-10-23)[2024-01-22]. https://www.who.int/zh/news-room/fact-sheets/detail/healthy-diet
    [3] Tran T N, Atas M, Felfernig A, et al. An overview of recommender systems in the healthy food domain[J]. Journal of Intelligent Information Systems, 2018, 50(3): 501-526.
    [4] Bondevik N J, Bennin E K, Babur O, et al. A systematic review on food recommender systems[J]. Expert Systems with Applications, 2024, 238: 122166.
    [5] 中共中央国务院印发《“健康中国2030”规划纲要》[N]. 人民日报,2016-10-26(001).The CPC Central Committee and the State Council issued The Outline of the “Healthy China 2030” Plan[N]. People’s Daily, 2016-10-26(001).
    [6] 李兆丰,刘炎峻,徐勇将,等. 数字化食品在新时代下的发展与挑战[J]. 食品科学, 2022, 43(11): 1-8.LI Z F, LIU Y J, XU Y J, et al. Development and Challenges of Digital Foods in the New Area[J]. FOOD SCIENCE, 2022, 43(11): 1-8.
    [7] 刘志刚,贾梦真.膳食营养干预与脑健康:调整饮食节律中的“肠-脑”轴机制研究进展[J].中国食品学报, 2023, 23(2): 1-13.LIU Z G, JIA M Z. Dietary Nutrition Intervention and Brain Health: Research Advances of the Gut-brain Axis Mechanism in Regulating Diet Rhythm[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(2): 1-13.
    [8] 许智勇,金安江,马爱民.世界食品营养学研究文献计量分析[J].中国食品学报, 2023, 23(7): 442-454.XU Z Y, JIN A J, MA A M. Bibliometric Analysis of Global Trends in Food Nutrition Research[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(7): 442-454.
    [9] Lee S C, Wang H W, Lan T S. Adaptive Personalized Diet Linguistic Recommendation Mechanism Based on Type-2 Fuzzy Sets and Genetic Fuzzy Markup Language[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(5): 1777-1802.
    [10] Chen C H, Karvela M, Sohbati M, et al. PERSON—Personalized Expert Recommendation System for Optimized Nutrition[J]. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12(1): 151-160.
    [11] Toledo R Y, Alzahrani A A, Martínez L. A Food Recommender System Considering Nutritional Information and User PReferences[J]. IEEE Access, 2019, 7: 96695-96711.
    [12] Gao X Y, Feng F L, He X N, et al. Hierarchical Attention Network for Visually-Aware Food Recommendation[J]. IEEE Transactions on Multimedia, 2020, 22(6): 1647-1659.
    [13] Iwendi C, Khan S, Anajemba J H, et al. Realizing an Efficient IoMT-Assisted Patient Diet Recommendation System Through Machine Learning Model[J]. IEEE Access, 2020, 8: 28462-28474.
    [14] Lei Z F, Haq A U, Zeb A, et al. Is the suggested food your desired?: Multi-modal recipe recommendation with demand-based knowledge graph[J]. Expert Systems with Applications, 2021, 186: 115708.
    [15] Gao X Y, Feng F L, Huang H Y, et al. Food recommendation with graph convolutional network[J]. Information Sciences, 2022, 584: 170-183.
    [16] Rostami M, Oussalah M, Farrahi V, et al. A Novel Time-Aware Food Recommender-System Based on Deep Learning and Graph Clustering[J]. IEEE Access, 2022, 10: 52508-52524.
    [17] Zhang J Y, Li M Q, Liu W B, et al. Many-objective optimization meets recommendation systems: A food recommendation scenario[J]. Neurocomputing, 2022, 503: 109-117.
    [18] Fu C C, Huang Z S, Harmelen F V, et al. Food4healthKG: Knowledge graphs for food recommendations based on gut microbiota and mental health[J]. Artificial Intelligence in Medicine, 2023, 145: 102677.
    [19] Romero-Tapiador S, Tolosana R, Morales A, et al. AI4Food-NutritionFW: A Novel Framework for the Automatic Synthesis and Analysis of Eating Behaviours[J]. IEEE Access, 2023, 11: 112199-112211.
    [20] Song Y G, Yang X S, Xu C S. Self-supervised Calorie-aware Heterogeneous Graph Networks for Food Recommendation[J]. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 2023, 19(27): 1-23.
    [21] 中国营养学会. 中国居民膳食指南(2022)[M]. 北京: 人民卫生出版社, 2022.Chinese Nutrition Society. Dietary Guidelines for Chinese Residents (2022) [M]. Beijing: People’s Medical Publishing House, 2022.
    [22] 中国营养学会. 中国居民膳食指南科学研究报告(2021)[M]. 北京: 人民卫生出版社, 2021.Chinese Nutrition Society. Scientific Research Report on Dietary Guidelines for Chinese Residents (2021) [M]. Beijing: People’s Medical Publishing House, 2021.
    [23] 中国营养学会. 中国居民膳食营养素参考摄入量(2023)[M]. 北京: 人民卫生出版社, 2023.Chinese Nutrition Society. Reference intake of dietary nutrients for Chinese residents (2023) [M]. Beijing: People’s Medical Publishing House, 2023.
    [24] Dietary Guidelines Advisory Committee. Dietary guidelines for Americans (2015-2020) [M]. Government Printing Office, 2015.
    [25] 张佳月, 田征文, 谭红专. 人类基础代谢率测量方法的研究进展[J]. 中南大学学报(医学版), 2018, 43(7): 805-810.Zhang J Y, Tian Z W, Tan H Z. Research progress in measurement of human basal metabolic rate[J]. Journal of Central South University (Medical Science), 2018, 43(7): 805-810.
    [26] 王涛, 吕昌河. 基于合理膳食结构的人均食物需求量估算[J]. 农业工程学报, 2012, 28(5): 273-277.Wang T, Lyu C H. Estimation of food grain demand per capita based on rational dietary pattern[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 273-277.
    [27] HE K M, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]//Proceeding of the IEEE conference on computer vision and pattern recognition. Las Vegas: Institute of Electrical and Electronics Engineers, 2016: 770-778.
    [28] Maaten L, Hinton G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(11): 2579-2605.
    [29] G?rtler J, Hohman F, Moritz D, et al. Neo: Generalizing Confusion Matrix Visualization to Hierarchical and Multi-Output Labels[C]. CHI ''22: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, 2022, 408: 1-13.
    [30] Yu P L. Multiple Criteria Decision Making: Concepts, Techniques and Extensions[M]. New York: Plenum, 1985.
    [31] Galperin E A. Pareto Analysis vis-à-vis Balance Space Approach in Multiobjective Global Optimization[J]. Journal of Optimization Theory and Applications, 1997, 93(3): 533-545.
    [32] Ehrgott M, Galperin E A. Min-Max Formulation of the Balance Number in Multiobjective Global Optimization[J]. Computers and Mathematics with Applications, 2022, 44(7): 899-907.
    [33] Rong C, Liu Z, Huo N, et al. Exploring Chinese Dietary Habits Using Recipes Extracted From Websites[J]. IEEE Access, 2019, 7: 24354-24361.
    [34] Muscogiuri G, Verde L, Colao A. Body Mass Index (BMI): Still be used? [J]. European Journal of Internal Medicine, 2023, 117: 50-51.
    [35] Min W Q, Jiang S Q, Jain R. Food Recommendation: Framework, Existing Solutions, and Challenges[J]. IEEE Transactions on Multimedia, 2020, 22(10): 2659-2671.
    [36] Castro J, Toledo Y R, A. Alzahrani A, et al. A Big Data Semantic Driven Context Aware Recommendation Method for Question-Answer Items[J]. IEEE Access, 2019, 7: 182664-182678.
    [37] Xue X, Han H F, Wang S F, et al. Computational Experiment-Based Evaluation on Context-Aware O2O Service Recommendation[J]. IEEE Transactions on Services Computing, 2019, 12(6): 910-924
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

引用本文
分享
文章指标
  • 点击次数:268
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-03-11
  • 最后修改日期:2024-03-28
  • 录用日期:2024-04-26
文章二维码