车联网业务特性模型下卸载反馈策略的设计与评估
作者:
作者单位:

1.辽宁工程技术大学电子与信息工程学院;2.辽宁工程技术大学 a.电子与信息工程学院 b.辽宁工程技术大学研究生院

中图分类号:

TN 915.01???????

基金项目:

国家重点研发计划(2018YFB1403303);辽宁省博士启动基金(2019-BS-114)


Design and evaluation of offload feedback strategy evaluation framework based on business characteristic model in internet of vehicles
Author:
Affiliation:

1.a. School of Electronic and Information Engineering;2.b. Institute of Graduate,Liaoning Technical University,Huludao 125100;3.China;4.b. Institute of Graduate,Liaoning Technical University;5.School of Electronic and Information Engineering, Liaoning Technical University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着移动边缘计算车联网中业务特征逐渐变多,针对设计卸载反馈策略时需考虑业务特征的复杂建模问题,实现服务器到端传输的性能评估是一大挑战。为实现性能的多维度综合评估,本文基于排队论和马尔可夫调制服务过程构建了一种考虑时变多类型业务的缓存调度策略评估框架。为了适应各种通信环境,所提出的框架可灵活调控业务特性、双端处理速率和卸载反馈策略。基于该框架,提出一种基于概率分布的卸载反馈策略。数值结果表明,所提出策略的传输性能较传统优越50%,这一结果同样证明了所提出的框架能在不同通信环境和硬件配置下为设计策略提供参考。

    Abstract:

    With the increasing number of business characteristics in the Internet of Vehicles (IoV) under the background of mobile edge computing (MEC), it is a challenge to realize the performance evaluation of server-to-end transmission in view of the complex modeling problem that needs to consider the service characteristics when designing the offload feedback strategy. In order to achieve a multi-dimensional comprehensive evaluation of performance, a cache scheduling strategy evaluation framework considering time-varying multi-type services is constructed based on queuing theory and Markov modulation service process. In order to adapt to various communication environments, the proposed framework can flexibly regulate business characteristics, double-ended processing rate and offload feedback strategy. Based on this framework, a offload feedback strategy based on statistical prediction method is proposed. Numerical results show that the transmission performance of the proposed strategy is 50% better than that of the traditional one, which also proves that the proposed framework can provide a reference for the design strategy under different communication environments and hardware configurations.

    参考文献
    [1] 黄永明,郑冲,张征明,尤肖虎.大规模无线通信网络移动边缘计算和缓存研究[J].通信学报,2021,42(4):44-61.
    [2] Xu J, Chen L, Zhou P. Joint Service Caching and Task Offloading for Mobile Edge Computing in Dense Networks[A]. IEEE INFOCOM 2018-IEEE Conference on Computer Communications[C]. Honolulu, HI: IEEE, 2018: 207–215.
    [3] Zhang S, Li J, Luo H, et al. Low-Latency and Fresh Content Provision in Information-Centric Vehicular Networks[J]. IEEE Transactions on Mobile Computing, 2022, 21(5): 1723–1738.
    [4] 张建军,代帅康,张本宏.车联网中基于任务紧急性的联合卸载方案[J].电子测量与仪器学报,2020,34(11):66-71.DOI:10.13382/j.jemi.B2003083.
    [5] 李方伟,张海波,王子心.车联网中基于MEC的V2X协同缓存和资源分配[J].通信学报,2021,42(02):26-36.
    [6] Peng K, Nie J, Kumar N, et al. Joint optimization of service chain caching and task offloading in mobile edge computing[J]. Applied Soft Computing, 2021, 103: 107142.
    [7] 戚艾林,李旭杰,陆睦,花思洋.基于遗传算法的5G车联网的数据协作分发策略研究[J].电子测量技术,2019,38(01):33-37.DOI:10.19652/j.cnki.femt.1801071.
    [8] Liu Y, Yu H, Xie S, et al. Deep Reinforcement Learning for Offloading and Resource Allocation in Vehicle Edge Computing and Networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 11158–11168.
    [9] Silva L, Magaia N, Sousa B, at al. Computing paradigms in emerging vehicular environments: A review. IEEE/CAA Journal of Automatica Sinica. 2021 Feb 3;8(3):491-511.
    [10] 张海霞,李腆腆,李东阳,刘文杰.基于车辆行为分析的智能车联网关键技术研究[J].电子与信息学报,2020,42(01):36-49.
    [11] 侯世武,谭献海.典型物联网业务流量特性研究分析[J].物联网技术,2017,7(06):40-42+46.DOI:10.16667/j.issn.2095-1302.2017.06.010.
    [12] 董振江,古永承,梁健,黄振江,王杰,李大成.C-V2X车联网关键技术与方案概述[J].电信科学,2020,36(04):3-14.
    [13] 王海陶,宋小明,卢纪宇.物联网业务特征及业务模型研究[J].广西通信技术,2012,(03):43-49.
    [14] 程一凡,曲至诚,张更新.低轨卫星星座物联网业务量建模[J].电子与信息学报,2021,43(04):1050-1056.
    [15] 耿珂,胡坤,高强,熊华钢.复杂环境下双向协作通信研究[J].电子测量技术,2019,42(01):116-120.DOI:10.19651/j.cnki.emt.1802117.
    [16] Zhu Y, Sheng M, Li J, at el. Modeling and Performance Analysis for Satellite Data Relay Networks Using Two-Dimensional Markov-Modulated Process[J]. IEEE Transactions on Wireless Communications, 2020, 19(6): 3894–3907.
    [17] Metzger F, Ho?feld T, Bauer A, et al. Modeling of Aggregated IoT Traffic and Its Application to an IoT Cloud[J]. Proceedings of the IEEE, 2019, 107(4): 679–694.
    [18] Zhang M, Zhu X Y, Wang S, et al. A channel allocation framework under responsive pricing in heterogeneous cognitive radio network[J]. IEEE Transactions on Cognitive Communications and Networking, 2023: 1–1. DOI:10.1109/TCCN.2023.3270449.
    [19] Wang S, Lan H, Zhu X, et al. A Performance Evaluation System of Channel Allocation Protocol Based on Probability Vectors for Cognitive Radio Network[A]. 2021 IEEE 4th International Conference on Electronics Technology (ICET)[C]. Chengdu, China: IEEE, 2021: 1062–1067.
    [20] 罗峰,马逸飞,郭怡,王子通,吴名芝.车载时间敏感网络链路冗余调度性能分析[J].仪器仪表学报,2023,44(02):278-288.DOI:10.19650/j.cnki.cjsi.J2209893.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-11
  • 最后修改日期:2024-04-05
  • 录用日期:2024-06-13
文章二维码