基于不同PPP-AR产品的多GNSS模糊度固定研究
作者:
作者单位:

1.滇西应用技术大学 测绘与信息工程学院;2.滇西应用技术大学 云南省高校山地实景点云数据处理及应用重点实验室;3.长安大学 地质与测绘学院;4.云南建投第一勘察设计有限公司

基金项目:

云南省地方本科高校基础研究联合专项资金项目“基于地面三维激光扫描与机载LiDAR点云融合三维建模研究”(202101BA070001-238);2022年云南省科技厅基础研究专项“基于点云所构建真实场景模型的泥石流沟谷变化检测研究”(202201AU070108)。


Multi-GNSS Ambiguity Resolution Study based on Different PPP-AR Products
Author:
Affiliation:

1.West Yunnan University of Applied Sciences,School of Surveying and Information Engineering,Dali Yunnan;2.West Yunnan University of Applied Sciences,Key Laboratory of Mountain Real Scene Point Cloud Data Processing and Application for Universities in Yunnan Province,Dali Yunnan;3.College of Geological Engineering and Geomatics, China&4.#39;5.an University;6.Yunnan Construction Investment First Investigation and Design Co,Ltd Kunming Yunnan

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对不同类型的模糊度产品,本文基于双频无电离层组合模型介绍了PPP-AR方法的原理与方法,从定位精度、收敛时间、首次固定时间和模糊度固定率四个指标对实验结果做出详细分析。结果表明:单GPS系统和单Galileo系统实验方案的相位偏差产品和小数偏差产品的模糊度固定解分别为0.53 cm、0.54 cm、1.05 cm和0.59 cm、0.58 cm、1.31 cm,相比于浮点解提升了49.0%、32.5%、15.3%和41.6%、20.5%、3.7 %。相位偏差产品能够将单GPS系统的收敛时间由17.5 min提升至13.5 min,提升了22.9 %,但模糊度产品对Galileo系统的收敛时间提升较小,只有不到10 %,单GPS系统和单Galileo系统的首次固定时间分别在21 min和27 min左右。各PPP-AR产品的单GPS系统模糊度固定率均在90 %以上,而单Galileo系统模糊度固定率均在85%左右。随着BDS系统的加入,多系统相位偏差产品的定位精度达到0.45 cm、0.49 cm和1.02 cm,提升了32%、34.7%和17.1%,收敛时间缩短至10 min以内,首次固定时间降至10 min左右,各模糊度产品均能保持95%以上的模糊度固定率。

    Abstract:

    For different ambiguity products, this paper introduced the principle and methodology of the PPP-AR methods based on the dual-frequency ionosphere-free combination model, made detailed analysis of the experimental results in terms of four indexes: positioning accuracy, convergence time, the time to first fix and ambiguity fix rate. The results show that: the ambiguity fix solutions of phase bias product and fractional cycle bias product for the single GPS system and single Galileo system experimental schemes are 0.53 cm, 0.54 cm, 1.05 cm and 0.59 cm, 0.58 cm, 1.31 cm, respectively, which are 49.0%, 32.5%, 15.3% and 41.6%, 20.5%, 3.7 % improved compared with the floating solution. The phase bias product is able to improve the convergence time of the single GPS system by 22.9 % from 17.5 min to 13.5 min, but the ambiguity product improves the convergence time of the Galileo system by less than 10 %, the time to first fix was around 21 min and 27 min for the single GPS system and the single Galileo system, respectively. The ambiguity fix rate of each PPP-AR products is above 90 % for the single GPS system, while the ambiguity fix rate of the single Galileo system is around 85 %.. With the addition of the BDS system, the positioning accuracies of the multi-system phase bias products reach 0.45 cm, 0.49 cm, and 1.02 cm, which are improved by 32 %, 34.7 %, 17.1 %, the convergence time is shortened to less than 10 min, and the time to first fix is reduced to around 10 min, and all the ambiguity products can maintain ambiguity fix rate more than 95 %.

    参考文献
    [1] 张小红,李星星,李盼.GNSS精密单点定位技术及应用进展[J].测绘学报,2017,46(10):1399-1407.
    [2] GE M, GENDT G, ROTHACHER M, et al. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations[J]. Journal of geodesy, 2008, 82(7).
    [3] LAURICHESSE D, MERCIER F, et al. Real time zero difference ambiguities fixing and absolute RTK[C]. Proceedings of ION NTM 2008, 2008: 747–755.
    [4] GENG J, WEN Q, ZHANG Q, et al. GNSS observable-specific phase biases for all-frequency PPP ambiguity resolution[J].Journal of Geodesy, 2022.DOI:10.1007/s00190-022-01602-3.
    [5] DENIS L. The CNES Real-time PPP with undifferenced integer ambiguity resolution demonstrator[C]. Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation. 2011.
    [6] 邓志国,王君刚,葛茂荣.GBM快速轨道产品及非差模糊度固定对其精度的改进[J].测绘学报,2022,51(04):544-555.
    [7] HU J, ZHANG X, LI P, et al. Multi-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan University[J]. GPS Solutions, 2020, 24(1):15-.
    [8] LI X, HAN X, LI X, et al. GREAT-UPD: An open-source software for uncalibrated phase delay estimation based on multi-GNSS and multi-frequency observations[J]. GPS Solutions, 2021, 25(2):1-9.
    [9] LIU G, GUO F, et al. Triple-Frequency GPS Un-Differenced and Uncombined PPP Ambiguity Resolution Using Observable-Specific Satellite Signal Biases[J]. Remote Sensing, 2020, 12(14).
    [10] GENG J, ZHANG Q, LI G. et al. Observable-specific phase biases of Wuhan multi-GNSS experiment analysis center’s rapid satellite products[J]. Satellite Navigation 3, 23 (2022).
    [11] GENG J, GUO J, et al. Satellite antenna phase center errors: magnified threat to multi-frequency PPP ambiguity resolution[J]. Journal of Geodesy, 2021, 95(6).
    [12] GLANER M, WEBER R. PPP with integer ambiguity resolution for GPS and Galileo using satellite products from different analysis centers[J]. GPS Solutions, 2021(4):25.
    [13] GENG J, CHEN X, et al. A modified phase clock/bias model to improve PPP ambiguity resolution at Wuhan University[J]. Journal of Geodesy, 2019(2):2053-2067.
    [14] CHEN C, XIAO G, et al. Assessment of GPS/Galileo/BDS Precise Point Positioning with Ambiguity Resolution Using Products from Different Analysis Centers[J]. Remote Sensing, 2021, 13(16):3266.
    [15] DONG D, BOCK Y. Global Positioning System Network analysis with phase ambiguity resolution applied to crustal deformation studies in California[J]. Journal of Geophysical Research Solid Earth, 1989, 94(4):3949-3966.
    [16] PETER T. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation [J]. Journal of Geodesy,1995,70(1-2).
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:162
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-03-27
  • 最后修改日期:2024-08-30
  • 录用日期:2024-09-02
文章二维码