基于SSA-LSTM的工业锅炉水质预测算法
作者:
作者单位:

1.河南省锅炉压力容器检验技术科学研究院;2.重庆大学 自动化学院

基金项目:

河南省锅炉压力容器安全检测研究院基本科研业务费支持项目


Boiler Water Quality Prediciton Algorithm Based on SSA-LSTM
Author:
Affiliation:

1.Henan Boiler and Pressure Vessel Inspection Technology Scientific Research Institute;2.School of Automation, Chongqing University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    工业锅炉水质预测对于保障生产运行的安全和效率至关重要。虽然长短期记忆神经网络(LSTM)在处理大时间尺度数据方面表现出色,但其参数选择并非直接确定,容易受困于局部最优,因此需要对其参数进行优化。本研究旨在提出一种基于麻雀搜索算法(SSA)优化LSTM的水质预测算法。通过模拟麻雀觅食行为,SSA迭代优化LSTM参数,以寻求更优的设置。优化后的LSTM算法被用于处理水质数据,构建了SSA-LSTM预测模型的核心部分。实验结果显示,相较于传统的LSTM和CNN-LSTM模型,在工业锅炉水质预测方面,该算法展现出更高的准确性和可靠性。预测准确率达到99.99%,平均绝对误差(MAE)为0.001940,相对MAE(RMAE)为0.002083。这项研究为工业领域提供了一种有效的水质预测方法,并凸显了SSA-LSTM在时间序列预测任务中的潜在应用价值。

    Abstract:

    Predicting the water quality of industrial boilers is crucial for ensuring operational safety and efficiency. While Long Short-Term Memory (LSTM) neural networks excel at handling extensive temporal data, their parameter selection is not directly determined and often susceptible to local optima. Hence, optimizing these parameters becomes essential. This study aims to propose a water quality prediction algorithm by leveraging the Sparrow Search Algorithm (SSA) to optimize LSTM.By simulating sparrow foraging behavior, SSA iteratively refines LSTM parameters to seek more optimal configurations. The optimized LSTM algorithm is employed for processing water quality data, forming the core of the SSA-LSTM predictive model. Experimental findings reveal that compared to traditional LSTM and CNN-LSTM models, this algorithm demonstrates higher accuracy and reliability in forecasting industrial boiler water quality. Achieving an accuracy of 99.99%, with a Mean Absolute Error (MAE) of 0.001940 and Relative MAE (RMAE) of 0.002083, this research presents an effective method for water quality prediction in the industrial domain. It underscores the potential application value of SSA-LSTM in time series forecasting tasks within industrial settings.

    参考文献
    [1] Shim Jaegyu;Hong Seokmin;Lee Jiye;Lee Seungyong;Kim Young Mo;Chon Kangmin;Park Sanghun;Cho Kyung Hwa. Deep learning with data preprocessing methods for water quality prediction in ultrafiltration. [J] Elsevier期刊 .023
    [2] Bi Jing;Chen Zexian;Yuan Haitao;Zhang Jia. Accurate water quality prediction with attention-based bidirectional LSTM and encoder–decoder, [J]Elsevier期刊
    [3] 杨坪宏,胡奥,崔东文,杨杰. 基于数据处理与若干群体算法优化的 GRU/LSTM水质时间序列预测, 水资源与水工程学报. 2023,34(04)
    [4] 王渤权,金传鑫,周论,沈笛,蒋志强. 基于长短期记忆网络的西丽水库水质预测, 长江科学院报. 2023,40(06), 64-70
    [5] 秦艳,徐庆,陈晓倩,刘振鸿,唐亦舜,高品. 基于在线监测时间序列数据的水质预测模型研究进展 ,华大学环境科学与工程学院 2023.04
    [6] 宋健,丛秋梅,杨帅,杨健,改进麻雀搜索算法的RBF神经网络水质预测,计算机系统应用,2023 32(04),255-261
    [7] Vijay Anand M;Sohitha Chennareddy;Saraswathi Galla Neha;Lavanya GV.Water quality prediction using CNN [J],英国皇家物理学会期刊,2023.01
    [8] 邓立军,袁金波,刘剑,尚文天,基于SSA-LSTM的风速异常波动检测方法,煤炭科学技术,2023.09
    [9] 王润英,林思雨,方卫华2,赵凯文,基于CNN-LSTM的大坝变形组合预测模型研究,2023.11
    [10] 姜嘉伟,赵金宝,刘文静,徐月娟,李明星,基于SSA-LSTM组合模型的城市轨道交通短时客流预测,山东科学. 2023,36(05)
    [11] 李新尧,基于SSA-LSTM神经网络的股票价格预测研究,信息系统工程. 2023(03)
    [12] Qianxiao Fei;Yuwei Xiang,Forecast of Shanghai Stock Exchange 50 Stock Index Based on CNN-LSTM| [J] 2022
    [13] 袁铁江,郭泽林,胡辰康. 基于LSTM-MPC的PEMFC运行状态建模与容错控制 [J/OL]. 中国电机工程学报, 1-10[2024-04-03]. https://doi.org/10.13334/j.0258-8013.pcsee.222534.
    [14] 李春生,孙博,商晓剑,等. 基于麻雀搜索算法优化神经网络的生菜生理指标预测 [J]. 山西农业科学, 2024, 52 (02): 120-127.
    [15] Ji H ,Wang H ,Chen Q , et al. Corrosion behavior prediction for hull steels under dynamic marine environments by jointly utilizing LSTM network and PSO-RF model [J]. Ocean Engineering, 2024, 300 117371-.
    [16] Gozuoglu A ,Ozgonenel O ,Gezegin C . CNN-LSTM based deep learning application on Jetson Nano: Estimating electrical energy consumption for future smart homes [J]. Internet of Things, 2024, 26 101148-.
    [17] Chen B ,Yang W ,Yan B , et al. An advanced airport terminal cooling load forecasting model integrating SSA and CNN-Transformer [J]. Energy Buildings, 2024, 309 114000-.
    [18] 李笛,杨东,王文庆,等. 基于CNN-LSTM-Attention的工业控制系统网络入侵检测方法研究 [J/OL]. 热力发电, 1-7[2024-04-03]. https://doi.org/10.19666/j.rlfd.202401014.
    [19] 黄训江,闫康. 基于Tf-LSTM的在线评论用户使用场景及关联产品特征需求研究 [J/OL]. 系统工程, 1-19[2024-04-03]. http://kns.cnki.net/kcms/detail/43.1115.N.20240327.1624.004.html.
    [20] 姜宇,马廷淮. 基于CNN-LSTM-Attention网络的河南省冬小麦产量预测 [J/OL]. 麦类作物学报, 1-8[2024-04-03]. http://kns.cnki.net/kcms/detail/61.1359.S.20240326.1556.002.html.
    [21] 杨潞霞,王梦冉,林兴亮,等. 基于CNN-LSTM的工业出水水质预测模型 [J/OL]. 净水技术, 1-8[2024-04-03]. http://kns.cnki.net/kcms/detail/31.1513.tq.20240301.1336.002.html.
    [22] 王振勋,王大虎. 基于SSA-LSTM网络的电力系统短期负荷预测 [J]. 科技与创新, 2024, (05): 117-119. DOI:10.15913/j.cnki.kjycx.2024.05.033.
    [23] Ehteram M ,Ahmed N A ,Sherif M , et al. An advanced deep learning model for predicting water quality index [J]. Ecological Indicators, 2024, 160 111806-.
    [24] Mohseni U ,Pande B C ,Pal C S , et al. Prediction of weighted arithmetic water quality index for urban water quality using ensemble machine learning model. [J]. Chemosphere, 2024, 352 141393-141393.
    [25] 闫孟婷,陶湘明,王胜军,等. 基于SSA-LSTM模型的水电站能效综合评价方法 [J]. 水电能源科学, 2024, 42 (02): 177-182. DOI:10.20040/j.cnki.1000-7709.2024.20230500.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:107
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-04-14
  • 最后修改日期:2024-08-19
  • 录用日期:2024-08-19
文章二维码