人工蜂群算法求解低碳混合流水车间调度问题
作者:
作者单位:

1.河北白沙烟草有限责任公司 保定卷烟厂;2.云南昆船设计研究院有限公司;3.华中科技大学 机械科学与工程学院

中图分类号:

TP273

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research on Energy-efficient Hybrid Flow Shop Scheduling Based on Artificial Bee Colony Algorithm
Author:
Affiliation:

1.Baoding Cigarette Factory,Hebei Baisha Tobacco Co,Ltd;2.Yunnan Kunshan Ship Design Research Institute Co;3.School of Mechanical Science and Engineering,Huazhong University of Science and Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为求解同时考虑序相关设置时间和运输时间约束的低碳混合流水车间调度问题,提出了一种多种群协同进化的离散人工蜂群(Multi-Population Discrete Artificial Bee Colony, MPDABC)算法。首先,采用工件排序和机器速度的两层编码策略表示一个可行的调度方案。解码中,针对机器设置和工件运输形成的时间约束改进传统解码规则;其次,采用锦标赛将种群拆分为多个子种群,并设计四种不同的邻域结构使各子种群能够在雇佣蜂阶段对当前邻域进行细致搜索;然后,在跟随蜂阶段,各子种群个体根据交互因子选择相应的跟随对象,实现子种群间的信息交互,并在侦查蜂阶段采用模拟退火机制避免算法陷入局部最优。最后,将MPDABC与其他三种多目标算法在24个算例上进行仿真实验,三种指标对比结果表明该算法具有优越的搜索性能,也验证了所提算法的有效性。

    Abstract:

    To address the energy-efficient hybrid flow shop scheduling problem that incorporates sequence-dependent setup time and transportation time constraints, a multi-population discrete artificial bee colony (MPDABC) algorithm is introduced. First, a two-layer encoding strategy is employed to represent a feasible scheduling solution, encompassing job sequencing and machine speed. During decoding, traditional rules are refined to accommodate time constraints arising from machine setup and job transportation. Next, a tournament mechanism partitions the population into multiple subpopulations. Four neighborhood structures are designed to facilitate detailed searches within each subpopulation during the employed bee phase. In the onlooker bee phase, individuals from each subpopulation select subsequent targets based on interaction factors, fostering inter-subpopulation information exchange. To prevent the algorithm from getting trapped in local optima during the scout bee phase, a simulated annealing mechanism is applied. Finally, the MPDABC is evaluated through simulation experiments alongside three other multi-objective algorithms on 24 instances. Comparison results demonstrate the superior search performance and effectiveness of the proposed MPDABC.

    参考文献
    [1] 吕岩, 徐正军, 李聪波, 等. 考虑扰动事件的机械加工工艺参数与车间动态调度综合节能优化[J]. 机械工程学报, 2022, 58(19): 242-255.Lv Y, Xu Z J, Li C B. Comprehensive energy saving optimization of processing parameters and job shop dynamic scheduling considering disturbance events [J]. Journal of Mechanical Engineering, 2022, 58(19): 242-255.
    [2] 王真, 王晨曦, 王宇豪, 等. 车间多载自动导引车绿色物流调度[J]. 重庆大学学报, 2020, 43(01): 44-52.Wang Z, Wang C X, Wang Y H, et al. On multi-load AGV green logistics scheduling in knitting workshop [J]. Journal of Chongqing University, 2020, 43(01): 44-52.
    [3] 张源, 陶翼飞, 王加冕. 改进差分进化算法求解混合流水车间调度问题[J]. 中国机械工程, 2021, 32(6): 714-720.Zhang Y, Tao Y F, Wang J M. An improved DE algorithm for solving hybrid flow-shop scheduling problems[J]. China Mechanical Engineering, 2021, 32(6): 714-720.
    [4] Ruiz R, Vázquez-Rodríguez J A. The hybrid flow shop scheduling problem[J]. European Journal of Operational Research, 2010, 205(1): 1-18.
    [5] 李颖俐, 李新宇, 高亮. 混合流水车间调度问题研究综述[J]. 中国机械工程, 2020, 31(23): 2798-2813+2828.Li Y L, Li X Y, Gao L. Review on Hybrid flow shop scheduling problems[J]. China Mechanical Engineering, 2020, 31(23): 2798-2813.
    [6] Dai M, Tang D B, Giret A, et al. Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm[J]. Robotics and Computer-integrated Manufacturing, 2013, 29(5), 418-429.
    [7] Zhou B H, Liu W L. Energy-efficient multi-objective scheduling algorithm for hybrid flow shop with fuzzy processing time[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019, 233(10): 1282-1297.
    [8] 雷德明, 杨冬婧. 基于新型蛙跳算法的低碳混合流水车间调度[J]. 控制与决策, 2020, 35(6): 1329-1337.Lei D M, Yang D J. A novel Shuffled frog-leaping algorithm for low carbon hybrid flow shop scheduling[J]. Control and Decision, 2020, 35(6): 1329-1337.
    [9] Li W M, Han D, Gao L, et al. Integrated production and transportation scheduling method in hybrid flow shop[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 12.
    [10] 邹裕吉, 宋豫川, 王毅, 等. 基于离散型鲸鱼优化算法的AGV与机器集成调度方法[J]. 重庆大学学报, 2022, 45(06): 55-74.Zou Y J, Song Y C, Wang Y, et al. AGV and machine integrated scheduling method based on discrete whale optimisation algorithm[J]. Journal of Chongqing University, 2022, 45(06): 55-74.
    [11] Liou C, Hsieh Y. A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times[J]. International Journal of Production Economics, 2015, 170: 258-267.
    [12] Istokovic D, Perinic M, Vlatkovic M, et al. Minimizing total production cost in a hybrid flow shop: a simulation-optimization approach[J]. International Journal of Simulation Modelling. 2020, 19(4): 559-570.
    [13] Gheisariha E, Tavana M, Jolai F, et al. A simulation-optimization model for solving flexible flow shop scheduling problems with rework and transportation[J]. Mathematics and Computers in Simulation, 2021, 180: 152-178.
    [14] 耿凯峰, 叶春明. 带工序跳跃的绿色混合流水车间机器与AGV联合调度[J]. 控制与决策, 2022, 37(10): 2723-2732.Geng K F, Ye C M. Joint scheduling of machines and AGVs in green hybrid flow shop with missing operations[J]. Control and Decision, 2022, 37(10): 2723-2732.
    [15] Fernandez-Viagas V, Perez-Gonzalez P, Framinan J M. Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective[J]. Computers and Operations Research, 2019, 109, 77-88.
    [16] 陈文洲, 李登峰, 郑小雪. 考虑低碳的分布式柔性作业车间调度优化[J]. 组合机床与自动化加工技术, 2021(11): 164-168.Chen W Z, Li D F, Zheng X X. Optimization of distributed flexible job-shop scheduling problem with low carbon[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2021(11): 164-168.
    [17] Geng K F, Liu L, Wu Z. Energy-efficient distributed heterogeneous re-entrant hybrid flow shop scheduling problem with sequence dependent setup times considering factory eligibility constraints[J]. Scientific Reports, 2022, 12(1): 18741.
    [18] 唐红涛, 张缓. 基于绿色生产的混合流水车间调度问题研究[J]. 工业工程, 2022, 25(3): 115-123.Tang H T, Zhang H. A research on hybrid flow shop scheduling based on green production[J]. Industrial Engineering Journal, 2022, 25(3): 115-123.
    [19] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
    [20] Wang G C, Li X Y, Gao L, et al. An effective multi-objective whale swarm algorithm for energy-efficient scheduling of distributed welding flow shop[J]. Annals of Operations Research, 2021, 310(1): 223-255.
    [21] 姚友杰, 钱斌, 董钰明, 等. 基于EDA的绿色零等待作业车间调度问题求解[J]. 电子学报, 2021, 49(02): 225-232.Yao Y J, Qian B, Dong Y M et al. EDA-Based for the Green No-wait Job Shop Scheduling Problem[J]. Acta Electronica Sinica, 2021, 49(02): 225-232.
    [22] Yao Y J, Li X Y, Gao L. A DQN-based memetic algorithm for energy-efficient job shop scheduling problem with integrated limited AGVs[J]. Swarm and Evolutionary Computation, 2024, 87: 101544.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:133
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-04-28
  • 最后修改日期:2024-08-25
  • 录用日期:2024-09-02
文章二维码