基于内聚力模型的配筋钢纤维混凝土结构承载性能研究
作者:
作者单位:

1.福建理工大学 土木工程学院;2.中国交通建设股份有限公司轨道交通分公司;3.福州大学 土木工程学院

中图分类号:

TU318??????

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Study on bearing capacity performance of of reinforced steel fiber concrete structure based on the cohesive zone model
Author:
Affiliation:

1.School of Civil Engineering,Fujian University of Technology;2.China Communications Construction Rail Transit Subsidiary,Bejing;3.College of Civil Engineering,Fuzhou University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为研究配筋钢纤维混凝土结构在断裂破坏全过程中的力学响应及断裂损伤机理,基于内聚力单元提出了一种配筋钢纤维混凝土结构数值模型的建模方法,其中内聚力单元被用于表征钢纤维混凝土潜在断裂面及钢筋—混凝土界面。基于所建立模型,提出了综合考虑复合损伤作用、缝间摩擦以及纤维桥接效应的钢纤维混凝土本构模型。此外,在经典钢筋—混凝土界面黏结滑移模型的基础上,补充考虑界面法向分离及其对切向黏结性能弱化作用,建立了一种改进的钢筋—混凝土界面本构模型。为验证模型准确性,设计了一组配筋钢纤维混凝土梁的四点弯曲试验。通过对比模拟与试验结果,所建立的数值模型具有一定的适用性,能够较好的模拟配筋钢纤维混凝土的断裂破坏全过程力学响应以及相应的断裂形态。基于所建立本构模型的特点,进一步研究了纤维掺量和钢纤维混凝土缝间摩擦系数对结构承载性能的影响。研究结果表明,当纤维掺量较小以及摩擦系数取值不合理时(系数偏小或不考虑摩擦),结构的承载性能在塑性阶段会受到显著影响,主要表现为承载能力下降且脆性增大。

    Abstract:

    To investigate the mechanical response and fracture mechanism of the steel fiber reinforced concrete (SFRC) structure, a numerical modeling method based on the application of cohesive elements was proposed. In the proposed model, cohesive elements were used to characterize the potential fracture surfaces and the rebar-concrete interfaces. By considering the mixed-mode damage relation, friction, and the bridging effect of fibers, a constitutive model of SFRC potential fracture surfaces was developed. Besides, based on the traditional bond-slip relation, a modified constitutive model of the rebar-concrete interface was proposed by considering the separation in the normal direction. To validate the proposed model, a group of SFRC four-point bending experiments was carried out. Through the comparison between the simulation and experiments, the proposed model was proved to be able to simulate the mechanical response and the fracture behavior of the SFRC structure appropriately. According to the characterization of the SFRC constitutive model, the influence of the fiber content and concrete friction factor on the structure bearing capacity was studied. It is found that when the fiber content is small or the friction factor is unreasonable, the bearing capacity and the ductility would decrease significantly.

    参考文献
    [1] 范向前,胡少伟,朱海堂,等. 龄期和试件尺寸对钢纤维混凝土抗压强度的影响[J]. 混凝土与水泥制品. 2011(04): 42-45. DOI: 10.19761/j.1000-4637.2011.04.011.Fan X Q, Hu S W, Zhu H T, et al. Experimental study on time and size affect the compressive strength of steel fiber reinforced concrete[J], China Concrete And Cement Products, 2011(04): 42-45. DOI: 10.19761/j.1000-4637.2011.04.011.(in Chinese)
    [2] 关虓,牛荻涛,吴博,等. 纤维混凝土受压细观统计损伤本构模型研究[J]. 西安建筑科技大学学报(自然科学版). 2015, 47(05): 678-683. DOI: 10.15986/j.1006-7930.2015.05.012.Guan X, Niu D T, Wu B, et al. Research on meso stochastic damage constitutive model of fiber concrete under compression[J], Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2015, 47(05): 678-683. DOI: 10.15986/j.1006-7930.2015.05.012.(in Chinese)
    [3] 池寅,黄乐,余敏. 基于ABAQUS的钢-聚丙烯混杂纤维混凝土损伤塑性本构模型取值方法研究[J]. 工程力学. 2017, 34(12): 131-142. DOI: 10.6052/j.issn.1000-4750.2016.08.0630.Chi Y, Huang L, Yu M. Calibration method of damage plasticity model for steel-polypropylene hybrid fiber reinforced concrete based on ABAQUS[J], Engineering Mechanics,2017,34(12):131-142.DOI: 10.6052/j.issn.1000-4750.2016.08.0630.(in Chinese)
    [4] 何雅杰. 静动载作用下钢纤维混凝土力学性能试验研究[D]. 安徽理工大学, 2021. DOI: 10.26918/d.cnki.ghngc.2021.000579.He Y J. Study on the dynamic performance of steel fiber concrete under static load[D], AnHui University of Science and Technology, 2021. DOI: 10.26918/d.cnki.ghngc.2021.000579.(in Chinese)
    [5] Mihai I C, Jefferson A D, Lyons P. A plastic-damage constitutive model for the finite element analysis of fibre reinforced concrete[J]. Engineering Fracture Mechanics. 2016, 159: 35-62. DOI: https://doi.org/10.1016/j.engfracmech.2015.12.035.
    [6] 毕继红,霍琳颖,乔浩玥,等. 单向受拉状态下的钢纤维混凝土本构模型[J]. 工程力学. 2020, 37(06): 155-164. DOI: 10.6052/j.issn.1000-4750.2019.08.0443.Bi J H, Huo L Y, Qiao J Y, et al. A constitutive model of steel fiber reinforced concrete under uniaxial tension[J], Engineering Mechanics, 2020, 37(06): 155-164. DOI: 10.6052/j.issn.1000-4750.2019.08.0443.(in Chinese)
    [7] Sujivorakul C, Waas A M, Naaman A E. Pullout response of a smooth fiber with an end anchorage[J]. Journal of Engineering Mechanics. 2000, 126(9): 986-993. DOI: https://doi.org/10.1061/(ASCE)0733-9399(2000)126:9(986).
    [8] Robins P, Austin S, Jones P. Pull-out behaviour of hooked steel fibres[J]. Materials and structures. 2002, 35(7): 434-442. DOI: https://link.springer.com/article/10.1007/BF02483148.
    [9] Laranjeira F, Aguado A, Molins C. Predicting the pullout response of inclined straight steel fibers[J]. Materials and structures. 2010, 43(6): 875-895. DOI: https://link.springer.com/article/10.1617/s11527-009-9553-4.
    [10] Laranjeira F, Molins C, Aguado A. Predicting the pullout response of inclined hooked steel fibers[J]. Cement and concrete research. 2010, 40(10): 1471-1487. DOI: https://doi.org/10.1016/j.cemconres.2010.05.005.
    [11] Soetens T, Van Gysel A, Matthys S, et al. A semi-analytical model to predict the pull-out behaviour of inclined hooked-end steel fibres[J]. Construction and Building Materials. 2013, 43: 253-265. DOI: https://doi.org/10.1016/j.conbuildmat.2013.01.034.
    [12] Feng J, Sun W W, Wang X M, et al. Mechanical analyses of hooked fiber pullout performance in ultra-high-performance concrete[J]. Construction and Building Materials. 2014, 69: 403-410. DOI: https://doi.org/10.1016/j.conbuildmat.2014.07.049.
    [13] López C M, Carol I, Aguado A. Meso-structural study of concrete fracture using interface elements. I: numerical model and tensile behavior[J]. Materials and structures. 2008, 41(3): 583-599. DOI: https://link.springer.com/article/10.1617/s11527-007-9314-1.
    [14] López C M, Carol I, Aguado A. Meso-structural study of concrete fracture using interface elements. II: compression, biaxial and Brazilian test[J]. Materials and structures. 2008, 41(3): 601-620. DOI: https://link.springer.com/article/10.1617/s11527-007-9312-3.
    [15] Wang X F, Yang Z J, Yates J R, et al. Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores[J]. Construction and Building Materials. 2015, 75: 35-45. DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.069.
    [16] Huang Y, Hu S. A cohesive model for concrete mesostructure considering friction effect between cracks[J]. Computers and Concrete, An International Journal. 2019, 24(1): 51-61. DOI: 10.12989/cac.2019.24.1.051.
    [17] De Maio U, Fabbrocino F, Greco F, et al. A study of concrete cover separation failure in FRP-plated RC beams via an inter-element fracture approach[J]. Composite Structures. 2019, 212: 625-636. DOI: https://doi.org/10.1016/j.compstruct.2019.01.025.
    [18] Huang Y, Zhang W, Liu X. Assessment of Diagonal Macrocrack-Induced Debonding Mechanisms in FRP-Strengthened RC Beams[J]. Journal of Composites for Construction. 2022, 26(5): 4022056. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0001255.
    [19] Chen G M, Teng J G, Chen J F. Finite-element modeling of intermediate crack debonding in FRP-plated RC beams[J]. Journal of Composites for Construction. 2011, 15(3):339-353.DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000157.
    [20] Syroka E, Bobiński J, Tejchman J. FE analysis of reinforced concrete corbels with enhanced continuum models[J]. Finite Elements in Analysis and Design. 2011, 47(9): 1066-1078. DOI: https://doi.org/10.1016/j.finel.2011.03.022.
    [21] De Maio U, Greco F, Leonetti L, et al. An investigation about debonding mechanisms in FRP-strengthened RC structural elements by using a cohesive/volumetric modeling technique[J]. Theoretical and Applied Fracture Mechanics. 2022, 117: 103199. DOI: https://doi.org/10.1016/j.tafmec.2021.103199.
    [22] Zhang W, Tang Z, Yang Y, et al. Assessment of FRP–concrete interfacial debonding with coupled mixed-mode cohesive zone model[J]. Journal of Composites for Construction. 2021, 25(2): 4021002. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0001114.
    [23] 张伟,唐站站,杨艳,等. 复合受力模式下CFRP混凝土界面剥离分析方法[J]. 建筑结构学报. 2022, 43(06): 257-264. DOI: 10.14006/j.jzjgxb.2020.0703.Zhang W, Tang Z Z, Yang Y, et al. Analysis method for debonding of CFRP-to-concrete interface under mixed-mode loading[J], Journal of Building Structures, 2022, 43(06): 257-264. DOI: 10.14006/j.jzjgxb.2020.0703.
    [24] Lee Y, Kang S, Kim J. Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix[J]. Construction and Building Materials. 2010, 24(10): 2030-2041. DOI: https://doi.org/10.1016/j.conbuildmat.2010.03.009.
    [25] Soetens T, Matthys S. Different methods to model the post-cracking behaviour of hooked-end steel fibre reinforced concrete[J]. Construction and Building Materials.2014,73:458-471.DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.093.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-29
  • 最后修改日期:2024-05-11
  • 录用日期:2024-07-05
文章二维码