带多处理器任务的混合流水车间问题的混合粒子群算法
作者单位:

郑州大学

基金项目:

河南省科技研发计划联合基金项目(242103810046);河南省科技攻关计划项目(232102321093, 232102321026);河南省哲学社会科学规划项目(2023BJJ085)。


A Hybrid Particle Swarm Optimization Algorithm for Hybrid Flowshop Scheduling Problems with Multiprocessor tasks
Affiliation:

Zhengzhou University

Fund Project:

Henan Province Science and Technology Research Program Project(232102321093, 232102321026);Henan Province Philosophy and Social Science Planning Project(2023BJJ085)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了解决工业制造过程中一个生产任务同时需多台处理器加工的问题,提出带运输时间的多阶段混合流水车间多处理器任务调度问题,该问题被证明是NP-hard问题,为此,构建以最小化最大完成时间(makespan)为优化目标的整数规划模型,提出一种融合改进粒子群算法、修正遗传算法和模拟退火算法的混合离散粒子群算法。首先,改进粒子群算法的相关行为以避免该算法存在的过早收敛问题;然后,引入遗传算法的交叉变异算子,进一步改善粒子群算法和遗传算法中的优秀个体;最后,采用模拟退火算法对得到的粒子群进行局域搜索以获取更高质量的解。所提算法与现有一些算法的对比分析说明了所提出的混合粒子群算法具有更好的优化效果。

    Abstract:

    In order to handle that one production task simultaneously requires multiple processors to process it,multiprocessor task scheduling in a multi-stage hybrid flowshop with transportation times is proposed.This problem has been shown to be NP-hard. For this, an integer programming model is constructed with the optimization objective of minimizing the maximum completion time (makespan).A mixed discrete particle swarm algorithm is developed combined with an improved particle swarm algorithm, a modified genetic algorithm and a simulated annealing algorithm. Firstly, the relevant behaviors of particle swarm algorithm are improved to avoid the premature convergence of this algorithm. Next,crossover and mutation operators of genetic algorithm are introduced to further enhance the excellent individuals in the particle swarm algorithm and genetic algorithm. Finally, a simulated annealing algorithm isapplied to perform local search for the obtained particle swarm so as to get solutions with higher quality. The comparison and analyses between the proposed algorithm and some existing algorithms show that the developed hybrid particle swarm algorithm has better performance.

    参考文献
    [1] Zuo Y, Fan Z, Zou T, et al. A novel multi-population artificial bee colony algorithm for energy-efficient hybrid flow shop scheduling problem[J]. Symmetry, 2021, 13(12): 2421.
    [2] 时维国,宋存利.求解混合流水车间调度问题的改进灰狼算法[J].计算机集成制造系统,2021,27(11):3196-3208.
    [3] Zhang X, Shao L. Multi-objective Evolutionary Alg-orithm for Distributed Hybrid Flow Shop Schedulingwith Multiprocessor Tasks[C]//2023 38th Youth Academic Annual Conference of Chinese Association of Automation (YAC). IEEE, 2023: 1-6.
    [4] Sarathambekai S, Umamaheswari K. Intelligent discrete particle swarm optimization for multiprocessor task scheduling problem[J]. Journal of Algorithms Computational Technology, 2017, 11(1): 58-67.
    [5] Kumar P R, Babu P, Palani S. Particle swarm opti-mization based sequential and parallel tasks scheduleing model for heterogeneous multiprocessor systems[J]. Fundamenta Informaticae, 2015, 139(1): 43-65
    [6] Gholami H, Sun H. Toward automated algorithm configuration for distributed hybrid flow shop scheduleing with m-ultiprocessor tasks[J]. Knowledge-Based Systems, 2023, 264: 110309.
    [7] Engin B E, Engin O. A new memetic global and local search algorithm for solving hybrid flow shop with multiprocessor task scheduling problem[J]. SN applied sciences, 2020, 2(12): 2059.
    [8] 可晓东,陶翼飞,罗俊斌等.反向人工蜂群算法求解混合流水车间调度问题[J].计算机应用研究,2023,40(04):1075-1079+1087.
    [9] Zini H, Elbernoussi S. An OBL harmony search forhybrid flow shop scheduling with multiprocessor tasks problem[J]. Journal of Advanced Manufacturing Systems, 2020, 19(04): 663-674.
    [10] 蔡芸,邓勇,张波等.带多处理器混合流水车间调度问题的混合鱼群算法[J].机械设计与制造,2017,(07):22-25.
    [11] Guan Y, Chen Y, Gan Z, et al. Hybrid flow-shop scheduling in collaborative manufacturing with a ? multi-crossover-operator genetic algorithm[J]. Journalof Industrial Information Integration, 2023, 36: 100514.
    [12] 轩华,王潞,李冰等.考虑运输的柔性流水车间多处理器任务调度的混合遗传优化算法[J].计算机集成制造系统,2020,26(03):707-717.
    [13] Engin O, Engin B. Hybrid flow shop with multiprocessor task scheduling based on earliness and tardiness penalties[J]. Journal of enterprise information management, 2018, 31(6): 925-936.
    [14] 王蒙,樊坤,翟亚飞,等.网络并行计算中多处理机任务调度问题研究[J].计算机工程与应用,2017,53(10):264-270.
    [15] Acharya B, Panda S, Ray N K. Multiprocessor TaskScheduling Optimization for Cyber-Physical System Using an Improved Salp Swarm Optimization Algorithm[J]. SN Computer Science, 2024, 5(1): 184.
    [16] Agarwal G, Gupta S, Ahuja R, et al. Multiprocessortask scheduling using multiobjective hybrid genetic Algorithm in Fog–cloud computing[J]. Knowledge-Based Systems, 2023, 272: 110563.
    [17] 杨思娜,瞿华.一种改进的多处理机约束混合车间调度算法[J].中国管理信息化,2020,23(17):113-115.
    [18] O?uz C, Zinder Y, Janiak A, et al. Hybrid flowshopscheduling problems with multiprocessor task systems[J]. Europ-ean Journal of Operational Research, 2004,152(1): 115-131.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:39
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-05-17
  • 最后修改日期:2024-10-25
  • 录用日期:2024-12-23
文章二维码