知识图谱增强的多任务图卷积推荐方法
DOI:
CSTR:
作者:
作者单位:

1.天津大学微电子学院;2.中国移动通信集团河北有限公司信息技术中心

作者简介:

通讯作者:

中图分类号:

TP393

基金项目:

国家自然科学(61771338),天津市重大科技专项资助项目(18ZXRHSY00190)。


Knowledge graph enhanced multi-task graph convolution recommendation method
Author:
Affiliation:

1.School of Microelectronics, Tianjin University;2.Information Technology Center, China Mobile Group Hebei Co., Ltd

Fund Project:

National Natural Science Foundation of China(No.61771338), The Tianjin Key Research Project(No.18ZXRHSY00190)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    信息爆炸和信息茧房问题日益严峻,用户需要准确和个性化的推荐方法以提升体验。传统的基于协同过滤的推荐方法在实际应用场景中常常面临数据稀疏问题,并且难以满足个性化推荐需求。为了解决以上问题,适应现代推荐任务的发展,提出一种知识图谱增强的多任务图卷积推荐方法(KGCR)。该系统整合了知识图谱中的关系结构和节点属性,通过知识图谱嵌入模块学习项目和实体之间的潜在关联,并应用神经矩阵分解架构设计推荐模块,以学习用户与物品的交互函数,最后由特征转移机制在两个模块间共享特征学习。在五个真实推荐场景上的实验结果表明,该推荐方法准确率超过多个先进基准模型,平均提升6.3%,具有优秀的推荐性能和泛化能力,并有助于解决数据稀疏性问题。

    Abstract:

    The issue of information explosion and information cocoon is becoming increasingly serious, and users need accurate and personalized recommendation methods to enhance their experience. Traditional recommendation methods based on collaborative filtering often face data sparsity problems in actual application scenarios and have difficulty meeting personalized recommendation needs. Inorder to solve the above problems and adapt to the development of modern recommendation tasks, a Knowledge Graph enhanced Multi-task Graph Convolution Recommendation Method (KGCR) is proposed. This method integrates the relationship structure and node attributes in the knowledge graph, learns the potential associations between projects and entities through the knowledge graph embedding module, and applies the Neural Matrix Factorization architecture to design the recommendation module to learn the interaction function between users and items. Finally, the feature transfer mechanism shares feature learning between the two modules. Experimental results in five real recommendation scenarios show that the accuracy of this recommendation method exceeds multiple advanced benchmark models, with an average increase of 6.3%, demonstrating excellent recommendation performance and generalization ability, and helping to solve the problem of data sparsity.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-29
  • 最后修改日期:2024-06-27
  • 录用日期:2024-07-15
  • 在线发布日期:
  • 出版日期:
文章二维码