几何参数对周期性波阻块连续屏障带隙特性影响研究
作者:
作者单位:

1.重庆交通大学 土木工程学院;2.重庆交通大学 土木工程学院 重庆市

中图分类号:

U 416?

基金项目:

重庆市自然科学基金(CSTB2023NSCQ-MSX0180);安徽省建筑声环境重点实验室开放基金课题(AAE2022KF02)


Research on the impact of geometric parameters on the impact of continuous barrier band characteristics of cyclical wave impending blocks
Author:
Affiliation:

School of Civil Engineering, Chongqing Jiaotong University

Fund Project:

Chongqing Natural Science Foundation (CSTB2023NSCQ-MSX0180); Anhui Province Key Laboratory of Building Sound Environment Open Fund Project (AAE2022KF02)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为探究几何参数对周期性波阻块连续屏障带隙特性的影响,基于声子晶体带隙理论,提出了以混凝土为基体、橡胶为包裹层、天然土体为芯体的周期性波阻块结构设计方案,采用有限元法对周期性波阻块的带隙特性进行了计算,系统分析了几何参数对带隙特性的影响机制,并结合室内模型对周期性波阻块的带隙特性进行了验证。结果表明:基体常数、包裹层厚度和芯体尺寸对带隙宽度的影响较大,而芯体形状的影响则不明显;影响带隙特性的主要因素依次为基体常数、芯体尺寸、包裹层厚度、芯体形状;实验所得衰减域与理论完全带隙区间契合度较高,证实了周期性波阻块连续屏障的带隙特性。

    Abstract:

    In order to explore the impact of geometric parameters on the characteristics of the continuous barrier gap characteristics of cyclical ripple blocks, based on the theory of sound -crystal band gap, the finite element method is used to calculate the concrete as the base, the rubber as the parcel layer, and the natural soil as the core body as the core body. The band characteristics of the cyclical wave resistance block, which in turn, design the orthogonal experiment to analyze the influence of geometric parameters on the completely band, and combine the indoor model experiment to verify the effectiveness of the band"s characteristics. Results show that the effects of single cell constant, the thickness of the package layer and the core body have a greater impact on the width of the band, while the effect of the core shape is not obvious; The thickness of the parcel layer and the shape of the core; the attenuation domain of the experiment is high and the theoretical completely gap range is high, which confirms the band characteristics of the continuous barrier of the periodic wave block.

    参考文献
    [1] Ulgen D , Toygar O .Screening effectiveness of open and in-filled wave barriers: A full-scale experimental study[J]. Construction Building Materials, 2015, 86(jul.1):12-20.
    [2] 刘晶磊, 于川情, 刘杰. 环形沟槽几何参数对隔振区域影响的试验研究[J]. 振动与冲击, 2019, 38(20): 266-274.Liu Jinglei, Yu Chuanqing, Liu Jie. Test research on the impact of geometric parameters of the ring groove on the vibration isolation area [J]. Vibration and impact, 2019, 38 (20): 266-274.
    [3] 高广运, 李志毅, 邱畅. 填充沟屏障远场被动隔振三维分析[J]. 岩土力学, 2005, 26(8): 1184-1188.Gao Guangyun, Li Zhiyi, Qiu Chang. Filling ditch barrier to distant vibration three -dimensional analysis [J]. Geotechnical mechanics, 2005, 26 (8): 1184-1188.
    [4] DIJCKMANS A, EKBLAD A, SMEKAL A, et al. Efficacy of a sheet pile wall as a wave barrier for railway induced ground vibration [J]. Soil Dynamics and Earthquake Engineering, 2016, 84: 55-69.
    [5] 夏唐代, 陈晨, 孙苗苗. SV波入射下多重散射问题的改进算法以及双排非连续刚性屏障的隔振研究[J]. 振动与冲击, 2011, 30(04): 86-90.Xia Tangdai, Chen Chen, Sun Miaomiao. SV waves of improvement algorithms under multiple scattering problems and vibrations of dual-row non-continuous rigid barriers [J]. Vibration and impact, 2011, 30 (04): 86-90.
    [6] CASTANHEIRA-PINTO A, ALVES-COSTA P, GODINHO L, et al. On the application of continuous buried periodic inclusions on the filtering of traffic vibrations: a numerical study [J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 391-405.
    [7] 张雪. 寒区高铁轨道振动蜂窝状波阻块隔振研究[D]. 哈尔滨工业大学, 2021.Zhang Xue. High-speed rail orbital vibration honeycomb hoping block vibration barrier research [D]. Harbin Institute of Technology, 2021.
    [8] Jia GF, Shi Z.F. A new seismic isolation system and its feasibility study, Earthquake Engineering and Engineering Vibration. 2010, 9(1): 75-82.
    [9] Shi Z.F, Cheng Z.B., Xiong C. A new seismic isolation method by using a periodic foundation, Earth and Space 2010: Engineering,Science,Construction, and Operations in Challenging Environments. Hawaii, ASCE, 2010, 2586-2594.
    [10] Bao J., Shi Z.F., Xiang H.J. Dynamic responses of a structure with periodic foundations, Journal of Engineering Mechanics. 2011, 138(7): 761-769.
    [11] Xiang H.J., Shi Z.F. Vibration attenuation in periodic composite Timoshenko beams on Pasternak foundation, Structural Engineering and Mechanics. 2011, 40(3): 373-392.
    [12] Xiong C., Shi Z.F., Xiang H.J. Vibration attenuation of buildings using periodic foundations, Advances in Structural Engineering. 2012, 15 (8): 1375-1388.
    [13] Cheng Z.B., Shi Z.F. Vibration attenuation properties of periodic rubber concrete panels, Construction and Building Materials. 2014, 50: 257-265.
    [14] 罗瑞. 高速铁路引发低频振动的隔振措施研究[D]. 湖北工业大学, 2019.
    [15] 张冰, 刘艳青, 张胜龙,等. 基于带隙特性的周期性排桩隔振性能研究[J]. 铁道建筑, 2018, 58(05): 148-151.
    [16] Xingbo Pu, Zhifei Shi. Surface-wave attenuation by periodic pile barriers in layered soils[J]. Construction and Building Materials, 2018, 180.
    [17] XU C, CHEN W, HAO H. The influence of design parameters of engineered aggregate in metaconcrete on bandgap region[J]. J Mech Phys Solids, 2020, 139(6): 103929.
    [18] MIRANDA E J P, ANGELIN A F, SILVA F M, et al. Passive vibration control using a metaconcrete thin plate[J]. Ceramica, 2019, 65(Suppl): 127?33.
    [19] 陈俊豪, 曾晓辉, 谢友均等. 具有减振功能的混凝土超材料的带隙特性[J]. 硅酸盐学报, 2023, 51(05): 1272-1282.
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:100
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-06-05
  • 最后修改日期:2024-08-22
  • 录用日期:2024-09-04
文章二维码