改进多目标灰狼算法优化洗出运动及实验验证
作者:
作者单位:

中国民航大学 航空工程学院

中图分类号:

TP391???????

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Improved multi-objective grey wolf algorithm for optimizing washout motion and experimental verification
Author:
Affiliation:

School of Aircraft Engineering,Civil Aviation University of China

Fund Project:

U1733128

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    洗出算法中滤波器的自然截止频率参数作为主要因素影响着洗出效果,进而影响飞行模拟器的运动逼真度,为得到滤波器自然截止频率最优参数,提出一种改进的多目标灰狼算法,旨在寻找最合适的滤波器参数。利用Logistic-tent映射进行初始化来提升种群的多样性,将差分进化算法的思想引入到多目标灰狼算法中进行迭代寻优,并采用非线性控制参数及引入惯性权重策略更新种群位置,有效地兼顾了算法的全局搜索和局部开发能力。通过以洗出算法的三个评价指标来建立目标函数,并利用模糊隶属度函数得到最优解。仿真及实验结果表明经过改进的多目标灰狼算法相比于经典洗出算法缩小了1.23s相位延迟并修正了感觉峰值,同时节省了18.5%运动平台的工作空间,洗出效果更加理想。

    Abstract:

    The natural cutoff frequency parameter of the filter in the wash-out algorithm is the main factor affecting the wash-out effect, and then affect the motion fidelity of the flight simulator. In order to obtain the optimal parameters of the natural cut-off frequency of the filter, an improved multi-objective grey wolf algorithm is put forward to find the most suitable filter parameters. The Logistic-tent mapping is used for initialization to improve the diversity of the population. The belief of the differential evolution algorithm is combined to the multi-objective grey wolf algorithm for iterative optimization. The nonlinear control parameters and the introduction of the inertia weight strategy are used to update the population position, which effectively balances the algorithm"s global search and sectional development abilities. The objective function is built by using three evaluation indicators of the wash-out algorithm, and use the fuzzy membership function to get the best solution. The simulation and experimental results demonstrate that the improved multi-objective grey wolf algorithm reduces the 1.23s phase delay and corrects the sensory peak compared with the classic wash-out algorithm, while saving 18.5% of the working space of the motion platform, and the wash-out effect is more ideal.

    参考文献
    [1] Qazani M R C, Asadi H, Rostami M, et al. Adaptive motion cueing algorithm based on fuzzy logic using online dexterity and direction monitoring[J]. IEEE Systems Journal, 2021, 16(2): 1945-1953.
    [2] Qazani M R C, Asadi H, Bellmann T, et al. Adaptive washout filter based on fuzzy logic for a motion simulation platform with consideration of joints’ limitations[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 12547-12558.
    [3] Duc-An P, Duc-Toan N. A novel motion cueing algorithm integrated multi-sensory system–Vestibular and proprioceptive system[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2020, 234(2): 256-271.
    [4] Qazani M R C, Asadi H, Nahavandi S. High-fidelity hexarot simulation-based motion platform using fuzzy incremental controller and model predictive control-based motion cueing algorithm[J]. IEEE Systems Journal, 2019, 14(4): 5073-5083.
    [5] Qazani M R C, Asadi H, Khoo S, et al. A linear time-varying model predictive control-based motion cueing algorithm for hexapod simulation-based motion platform[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 51(10): 6096-6110.
    [6] Qazani M R C, Asadi H, Mohamed S, et al. A time-varying weight MPC-based motion cueing algorithm for motion simulation platform[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(8): 11767-11778.
    [7] 杨宇. 飞行模拟器动感模拟关键技术研究[D].哈尔滨:哈尔滨工业大学, 2010.
    Yang Yun. Research on Key Technology of Motion Cueing for Flight Simulator[D]. Harbin : Harbin Institute of Technology, 2013.
    [9] [8]Mohammadi A, Asadi H, Mohamed S, et al. Multiobjective and interactive genetic algorithms for weight tuning of a model predictive control-based motion cueing algorithm[J]. IEEE transactions on cybernetics, 2018, 49(9): 3471-3481.
    [10] [9]刘伟超,王辉.基于运动试验平台的MOEA/D改进洗出算法仿真及试验[J].重庆大学学报,2023,46(01):125-136.
    Liu Weichao, Wang Hui. Simulation and Experiment of MOEA/D Improved Washing Algorithm Based on Motion Test Platform [J]. Journal of Chongqing University, 2019,46(01):125-136.
    [12] [10]Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in engineering software, 2014, 69: 46-61.
    [13] [11]戚艳,尚学军,聂靖宇,等.基于改进多目标灰狼算法的冷热电联供型微电网运行优化[J].电测与仪 表,2022,59(06):12-19+52.DOI:10.19753/j.issn1001-1390.2022.06.002.
    Qi Y, Shang X J, Nie J Y, et al. Optimization of CCHP micro-grid operation based on improved multi-objective grey wolf algorithm[J]. Electr. Meas. Instrum, 2020: 1-10.
    [15] [12]Altay O, Varol Altay E. A novel hybrid multilayer perceptron neural network with improved grey wolf optimizer[J]. Neural Computing and Applications, 2023, 35(1): 529-556.
    [16] [13]Shi J ,Tan L ,Zhang H , et al.Adaptive multi-UAV path planning method based on improved gray wolf algorithm[J].Computers and Electrical Engineering,2022,104(PA):
    [17] [14]Baig M H, Abbas Q, Ahmad J, et al. Differential Evolution Using Enhanced Mutation Strategy Based on Random Neighbor Selection[J]. Symmetry, 2023, 15(10): 1916.
    [18] [15]Zapotecas-Martínez S, Garcia-Najera A, Lopez-Jaimes A. Multi-objective grey wolf optimizer based on decomposition[J]. Expert Systems with Applications, 2019, 120: 357-371.
    [19] [16]王辉,彭乐.改进多目标蜂群算法优化洗出运动及仿真试验[J/OL].系统仿真学报:1-13[2023-03-30].DOI:10.16182/j.issn1004731x.joss.22-1193.
    Wang Hui, Peng Le. Optimization of flushing motion by improved multi-objective colony algorithm and simulation experiment [J/OL]. Journal of system simulation: 1-13 [2023-03-30]. DOI: 10.16182 / j.issn1004731x. Joss. 22-1193.
    [21] [17]Kabir M, Kabir M M J. Fuzzy membership function design: An adaptive neuro-fuzzy inference system (ANFIS) based approach[C]//2021 international conference on computer communication and informatics (ICCCI). IEEE, 2021: 1-5.
    [22] [18]王辉,吕兴顺.一种改进的萤火虫算法及在洗出优化中的应用[J].系统仿真学报,2021,33(02):306-314.DOI:10.16182/j.issn1004731x.joss.19-0226.
    Wang Hui, Lv Xingshun. An improved firefly algorithm and application in the wash out optimization [J]. Journal of system simulation, 2021 (02) : 306-314. The DOI: 10.16182 / j.i ssn1004731x. Joss. 19-0226.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:84
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-06-13
  • 最后修改日期:2024-09-07
  • 录用日期:2024-10-05
文章二维码