基于主动电场的水下可控阵列成像仿真研究
作者:
作者单位:

昆明理工大学 信息工程与自动化学院

中图分类号:

TN011.6 ?????

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Simulation study of underwater controllable array imaging based on active electric field
Author:
Affiliation:

School of Information Engineering and Automation,Kunming University of Science and Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    随着对海洋资源需求的不断增长,高效准确的水下探测技术变得尤为关键。传统的水下探测方法各有其优势,但在复杂黑暗的水下环境中常受限。而水下主动电场探测技术在这种环境中具有独特的优势。本文提出了一种基于主动电场的可控阵列收发一体化成像探测方式,旨在克服现有技术的局限,提高水下探测的效率和准确性。该方式通过动态调整阵列中的发射和接收点,精细控制电流场,处理接收信号实现对水下物体的高效成像。本研究对阵列接收点场强和障碍物电场扰动计算方法进行了理论分析,并通过仿真实验比较了两类电极排列方式对成像效果的影响。实验结果显示,中心对称排列方式在探测方面具有更优性能,为提高水下探测效率和准确性提供了新的技术视角。

    Abstract:

    As the demand for marine resources continues to grow, efficient and accurate underwater detection techniques have become particularly critical. Traditional detection methods have their own advantages, but they are often limited in complex and dark underwater environments. Underwater active electric field detection technology has unique advantages in this environment. In this paper, a controlled array transceiver-integrated imaging detection method based on active electric field is proposed, aiming to overcome the limitations of the existing technology and improve the efficiency and accuracy of underwater detection. The approach achieves efficient imaging of underwater objects by dynamically adjusting the transmitting and receiving points in the array, finely controlling the current field, and processing the received signals. In this study, the theoretical analysis of the calculation method of the field strength at the receiving point of the array and the electric field perturbation of the obstacle is carried out, and the effects of the two types of electrode arrangements on the imaging effect are compared by simulation experiments. The experimental results show that the centrosymmetric arrangement has better performance in detection, which provides a new technical perspective for improving the efficiency and accuracy of underwater detection.

    参考文献
    [1] 乔鹏飞,邵成,覃月明. 基于多波束前视声呐的水下静态目标的探测识别技术[J]. 数字海洋与水下攻防,2021,4(1):46-52.DOI:10.19838/j.issn.2096-5753.2021.01.008.QIAO Pengfei, SHAO Cheng, QIN Yueming. Detection and identification technology of underwater static targets based on multibeam forward-looking sonar[J]. Digital Ocean and Underwater Attack and Defence,2021,4(1):46-52.DOI:10.19838/j.issn.2096-5753.2021.01.008.
    [2] 林森,赵颍. 水下光学图像中目标探测关键技术研究综述[J]. 激光与光电子学进展,2020,57(6):18-29. DOI:10.3788/LOP57.060002.LIN Sen,ZHAO Ying. A review of key technologies for target detection in underwater optical images[J]. Advances in Lasers and Optoelectronics,2020,57(6):18-29.DOI:10.3788/LOP57.060002.
    [3] M. Stojanovic, O. Balatsoukas-Stimming, and J. Preisig. "Underwater Electrolocation and Communication for Sensor Networks." IEEE Journal of Oceanic Engineering, 2018.
    [4] C. K. Allen, S. J. Tan, and M. Stojanovic. "Electric-Field-Based Communication and Sensing in Aquatic Environments: State of the Art and Future Directions." IEEE Communications Magazine, 2017.
    [5] 王天宇. 基于弱电鱼仿生的水下电流场探测技术研究[D].哈尔滨工程大学,2019.T.Y. Wang. Research on underwater current field detection technology based on weak electric fish bionics[D]. Harbin Engineering University,2019.
    [6] 苏新铎.基于主动电流场的水下形状探测方法及电场特性探究[D].电子科技大学,2019.Su Xinduo. Exploration of underwater shape detection method and electric field characteristics based on active current field[D]. University of Electronic Science and Technology,2019.
    [7] 张浩. 基于电场检测的水下目标主动定位与识别技术研究[D].重庆大学,2020.DOI:10.27670/d.cnki.gcqdu.2020.003859.Zhang H. Research on active positioning and identification technology of underwater targets based on electric field detection[D]. Chongqing University,2020.DOI:10.27670/d.cnki.gcqdu.2020.003859.
    [8] 韩远见.基于AIFC的水下主动电场物体形状成像系统应用性研究[D].电子科技大学,2021.DOI:10.27005/d.cnki.gdzku.2021.004474.Yuanmei Han. Applied research on underwater active electric field object shape imaging system based on AIFC[D]. University of Electronic Science and Technology,2021.DOI:10.27005/d.cnki.gdzku.2021.004474.
    [9] 王家琦. 基于水下主动电场的阵列成像及缺陷检测的研究[D].电子科技大学,2021.DOI:10.27005/d.cnki.gdzku.2021.002543.J.Q. Wang. Research on array imaging and defect detection based on underwater active electric field[D]. University of Electronic Science and Technology,2021.DOI:10.27005/d.cnki.gdzku.2021.002543.
    [10] 杨汶洁,彭杰钢,徐林等.水下主动电场面形阵列布置及成像方法研究[J].数字海洋与水下攻防,2023,6(04):429-434.DOI:10.19838/j.issn.2096-5753.2023.04.005.Wenjie Yang,Jiegang Peng,Lin Xu et al. Research on the arrangement and imaging method of underwater active electric field surface array[J]. Digital Ocean and Underwater Attack and Defence,2023,6(04):429-434.DOI:10.19838/j.issn.2096-5753.2023.04.005.
    [11] CAPUTI A A,BUDELLI R,GRANT K,et al. The electric image in weakly electric fish:physical images of resistive objects in Gnathonemus petersii[J]. Journal of Experimental Biology,1998,201(14):2115-2128.
    [12] L. Kirschvink, M. Stojanovic, and M. Y. Solis. "Underwater Electrolocation: A Century of Aquatic Electroreception and Electrocommunication." IEEE Journal of Oceani.
    [13] 张义鑫,张果.水下回路通信电信号传输特性仿真研究[J].电子测量与仪器学报,2021,35(4):204-210.ZHANG Y X,ZHANG G. Simulation study on transmis-sion characteristics of electrical signals in underwater loopcommunication[J]. Journal of ElectronicMeasurementand Instrument,2021,35(4):204-210.
    [14] 焦其祥,电磁场与电磁波[M].北京:科学出版社,2004.JA0 QX.Electromagnetic feld and electromagnetiewave[ M ]. Beijing: Science Press , 2004.
    [15] 程天相,王剑平,金建辉.水下极板电场通信传输模型研究[J].重庆邮电大学学报(自然科学版),2023,35(01):31-39.CHENG Tianxiang,WANG Jianping,JIN Jianhui. Research on communication transmission model of underwater polar plate electric field[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition),2023,35(01):31-39.
    [16] Tang, Zhijie, et al. "Research on underwater target measurement technology based on sonar image and artificial landmark."Multimedia Tools and Applications82.19 (2023): 29713-29732.
    [17] Guiramand, Léo, X. Ropagnol, and F. Blanchard. "Far-field terahertz electric-field imaging using a polarization image sensor."2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2023.
    [18] Deluxni, N., Pradeep Sudhakaran, and Mouhamadou Falilou Ndiaye. "A Scrutiny on Image Enhancement and Restoration Techniques for Underwater Optical Imaging Applications."IEEE Access(2023).
    [19] Liu, Jun, et al. "Optical imaging study of underwater acousto-optical fusion imaging systems."Proceedings of the 13th International Conference on Underwater Networks Systems. 2018.
    [20] Cheng, Chensheng, et al. "Underwater localization and mapping based on multi-Beam forward looking sonar."Frontiers in Neurorobotics15 (2022): 801956.
    [21] Hu, Haofeng, et al. "Physics-informed neural network for polarimetric underwater imaging."Optics Express30.13 (2022): 22512-22522.
    [22] Ao, Jun, and Chunbo Ma. "Adaptive stretching method for underwater image color correction."International Journal of Pattern Recognition and Artificial Intelligence32.02 (2018): 1854001.
    [23] Bai, Xuemei, et al. "A data hiding scheme based on the difference of image interpolation algorithms."Journal of Information Security and Applications65 (2022): 103068.
    [24] Dharampal V M. Methods of image edge detection: A review[J]. Journal of Electrical Electronic Systems, 2015, 4(2): 5.
    [25] Zhu S, **, et al. "An image segmentation algorithm in image processing based on threshold segmentation."2007 third international IEEE conference on signal-image technologies and internet-based system. IEEE, 2007.
    相似文献
    引证文献
    引证文献 [0] 您输入的地址无效!
    没有找到您想要的资源,您输入的路径无效!

    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:154
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-06-17
  • 最后修改日期:2024-09-03
  • 录用日期:2024-10-05
文章二维码