考虑载荷不确定性的加筋板结构鲁棒性布局优化
作者单位:

1.天津大学;2.合肥工业大学

基金项目:

中国博士后科学基金(2022M712358);中央高校科研业务费基金(JZ2022HGTB0291)


Robust layout optimization of stiffened plate structures considering load uncertainty
Author:
Affiliation:

1.Tianjin University;2.Hefei University of Technology

Fund Project:

China Postdoctoral Science Foundation(2022M712358);Fundamental Research Funds for the Central Universities(JZ2022HGTB0291)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    加筋板结构中加强筋的分布位置严重影响其结构性能,目前大部分关于加筋板结构设计方面的工作都是在确定性载荷工况下开展的,忽略了载荷不确定性因素对结构刚度的影响。本文针对加筋板结构加强筋的布局优化问题,提出一种考虑载荷不确定性的鲁棒性结构布局优化方法,以实现加强筋布局和尺寸的同步优化。基于基结构法建立了以表征加强筋的圆形截面梁半径为设计变量、以结构整体的质量为约束,以不确定性载荷下结构柔度的期望和方差的线性加权值为目标的鲁棒性布局优化模型;详细推导了结构柔度的期望和方差、及质量约束关于设计变量的解析灵敏度列式,采用移动渐进线方法对鲁棒性布局优化问题进行求解;最后两个优化算例验证了本文方法的有效性。

    Abstract:

    The distribution of stiffeners in the stiffened plate structure seriously affects its structural performance. At present, most of the work on the design of the stiffened plate structure is carried out under deterministic load conditions, where the effect of load uncertainty on the structural stiffness is ignored. This paper proposes a robust structural layout optimization method for layout optimization problem of stiffeners in stiffened plate structures considering load uncertainty, and realizes the simultaneous optimization of the layout and size of stiffeners. A robust layout optimization model is established based on the ground structure method, with the radius of the circular section beam representing the stiffener as the design variable, the mass of the entire structure as the constraint, and the linear weighted value of the expected and variance of the structural compliance under uncertain loads as the objective. The analytical sensitivity formula of the expectation and variance of the structural compliance and the mass constraint with respect to design variables are deduced in detail. The method of moving asymptotes is adopted to solve the robust layout optimization problem. Finally, two examples are performed to verify the effectiveness of the proposed method.

    参考文献
    [1] M.M.Alinia. A study into optimization of stiffeners in plates subjected to shear loading[J]. Thin-Walled Structures ,2005, 43 845–860.
    [2] Hao P, Liu D, Zhang K, et al. Intelligent layout design of curvilinearly stiffened panels via deep learning-based method[J]. Materials & Design, 2021, 197: 109180.
    [3] 牛斌,闫家铭,毛玉明,刘海洋. 面向动力学性能的薄壁加筋板结构阻尼与筋条布局协同优化设计[J].中国机械工程,2021,32(16):1912-1920.NIU Bin, YAN Jiaming, MAO Yuming, LIU Haiyang.Co-optimization design of damping and reinforcement layout for thin-wall stiffened plate structure oriented to dynamic performance[J]. Chinese Journal of Mechanical Engineering, 2021,32(16):1912-1920.
    [4] Sakata S, Ashida F, Zako M. Eigenfrequency optimization of stiffened plate using Kriging estimation[J]. Computational mechanics, 2003, 31(5): 409-418.
    [5] DingX., YamazakiK., Stiffener layout design for plate structures by growing and branching tree model (application to vibration-proof design) [J], Structural and Multidisciplinary Optimization. 26 (1) (2004) 99–110.
    [6] Khosravi P, Sedaghati R, Ganesan R. Optimization of stiffened panels considering geometric nonlinearity[J]. Journal of Mechanics of Materials and Structures, 2007, 2(7): 1249-1265.
    [7] Liu S, Li Q, Chen W, et al. H-DGTP—a Heaviside-function based directional growth topology parameterization for design optimization of stiffener layout and height of thin-walled structures[J]. Structural and Multidisciplinary Optimization, 2015, 52(5): 903-913.
    [8] Zhao W, Kapania R K. Buckling analysis of unitized curvilinearly stiffened composite panels[J]. Composite Structures, 2016, 135: 365-382.
    [9] Liu H, Li B, Yang Z, et al. Topology optimization of stiffened plate/shell structures based on adaptive morphogenesis algorithm[J]. Journal of Manufacturing Systems, 2017, 43: 375-384.
    [10] Wang D, Abdalla M M, Wang Z P, et al. Streamline stiffener path optimization (SSPO) for embedded stiffener layout design of non-uniform curved grid-stiffened composite (NCGC) structures[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 344: 1021-1050.
    [11] Zhang W, Liu Y, Du Z, et al. A moving morphable component based topology optimization approach for rib-stiffened structures considering buckling constraints[J]. Journal of Mechanical Design, 2018, 140(11).
    [12] Guo X, Zhang W, Zhong W. Doing topology optimization explicitly and geometrically—a new moving morphable components based framework[J]. Journal of Applied Mechanics, 2014, 81(8). 081009.
    [13] Liu T, Sun G, Fang J, et al. Topographical design of stiffener layout for plates against blast loading using a modified ant colony optimization algorithm[J]. Structural and Multidisciplinary Optimization, 2019, 59(2): 335-350.
    [14] 覃霞, 刘珊珊, 谌亚菁, 彭林欣. 基于遗传算法的弹性地基加肋板肋梁无网格优化分析[J]. 力学学报, 2020, 52(1): 93-110.Tan Xia, Liu Shanshan, Chen Yajing, Peng Linxin. Meshless optimization analysis of ribbed beam with ribbed slab on elastic foundation based on genetic algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):93-110.
    [15] Chu S, Townsend S, Featherston C, et al. Simultaneous layout and topology optimization of curved stiffened panels[J]. AIAA Journal, 2021, 59(7): 2768-2783.
    [16] Savine F, Irisarri F X, Julien C, et al. A component-based method for the optimization of stiffener layout on large cylindrical rib-stiffened shell structures[J]. Structural and Multidisciplinary Optimization, 2021, 64(4): 1843-1861.
    [17] Ma X, Wang F, Aage N, et al. Generative design of stiffened plates based on homogenization method[J]. Structural and Multidisciplinary Optimization, 2021, 64(6): 3951-3969.
    [18] Feng S, Zhang W, Meng L, et al. Stiffener layout optimization of shell structures with B-spline parameterization method[J]. Structural and Multidisciplinary Optimization, 2021, 63(6): 2637-2651.
    [19] Sun Y, Zhou Y, Ke Z, et al. Stiffener layout optimization framework by isogeometric analysis-based stiffness spreading method[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 390: 114348.
    [20] Jiang X, Liu C, Du Z, et al. A unified framework for explicit layout/topology optimization of thin-walled structures based on Moving Morphable Components (MMC) method and adaptive ground structure approach[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 396: 115047.
    [21] Zhang W, Song J, Zhou J, et al. Topology optimization with multiple materials via moving morphable component (MMC) method[J]. International Journal for Numerical Methods in Engineering, 2018, 113(11): 1653-1675.
    [22] Wang X, Long K, Meng Z, et al. Explicit multi-material topology optimization embedded with variable-size movable holes using moving morphable bars[J]. Engineering Optimization, 2021, 53(7): 1212-1229.
    [23] 王选,胡平,龙凯. 考虑嵌入移动孔洞的多相材料布局优化. 力学学报, 2019, 51(3): 852-862.WANG Xuan, HU Ping, LONG Kai. Multiphase material layout optimization considering embedding mobile holes [J]. Chinese Journal of Theoretical and Applied Mechanics,2019, 51(3):852-862.
    [24] Li H, Gao L, Li H, et al. Spatial-varying multi-phase infill design using density-based topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113354.
    [25] Ferreira A J M, Fantuzzi N.. MATLAB codes for finite element analysis: Solids and Structures [M], Second Edition. Springer Netherlands, 2020.
    [26] 徐荣桥. 结构分析的有限元法与 MATLAB 程序设计[M].人民交通出版社, 2006.Xu Rongqiao. Finite Element Method and MATLAB Programming for Structural Analysis [M]. China Communications Press, 2006
    [27] Zhao J, Wang C. Robust topology optimization under loading uncertainty based on linear elastic theory and orthogonal diagonalization of symmetric matrices [J]. Computer Methods in Applied Mechanics and Engineering, 2014, 273: 204-218.
    [28] 付志方,赵军鹏, 王春洁. 多工况线性结构稳健拓扑优化设计. 力学学报, 2015, 47(4): 642-650.Fu Zhifang, Zhao Junpeng, Wang Chunjie. Robust topology optimization design of structures with multiple-uncertainty load cases [J]. Chinese Journal of Theoretical and Applied Mechanics. 2015, 47(4): 642-650.
    [29] Long K, Wang X, Du Y. Robust topology optimization formulation including local failure and load uncertainty using sequential quadratic programming [J]. International Journal of Mechanics and Materials in Design, 2019, 15(2): 317-332
    [30] Svanberg K. The method of moving asymptotes—a new method for structural optimization [J]. International journal for numerical methods in engineering, 1987, 24(2): 359-373.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:82
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-07-28
  • 最后修改日期:2024-10-01
  • 录用日期:2024-11-11
文章二维码