基于收费数据的多特征融合高速公路行程时间预测
作者:
作者单位:

中国人民公安大学 交通管理学院

基金项目:

国家重点研发计划项目(2023YFB4302701)


Multi-feature fusion expressway travel time prediction based on toll data
Author:
Affiliation:

College of Traffic Management, People’s Public Security University of China

Fund Project:

Funded by National Key Research and Development Program of China (2023YFB4302701)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为提高高速公路信息化管理水平,针对高速公路行程时间预测问题,提出一种以出口收费数据为基础的高速公路行程时间预测模型。该模型融合支持向量回归(support vector regression, SVR)和贝叶斯优化算法(bayesian optimization algorithm, BOA),引入均值滤波(mean filtering, MF)对数据集进行去噪,并充分考虑历史行程时间、车型等特征变量对行程时间的影响。选取G22青兰高速出口收费数据进行预测实验,实验结果表明:对比反向传播算法(back propagation, BP)、随机森林(random forest, RF)等基准模型,基于MF-BOA-SVR的预测模型在高速公路行程时间预测方面有更好的表现,且具有较强的泛化性,在G22青兰高速榆中收费站至兰州东收费站路段数据集上,平均绝对误差平均降低54.80%,均方根误差平均降低56.11%,平均绝对百分比误差平均降低53.94%。

    Abstract:

    To enhance the expressway informational management, a model for the expressway travel time prediction problem based on exit toll data was proposed. The model combines support vector regression (SVR) and bayesian optimization algorithm (BOA), and incorporates mean filtering (MF) to denoise the dataset, while fully considering the influence of historical travel time, vehicle type, and other characteristic variables on travel time. Selected G22 Qing-Lan Expressway exit toll data for prediction experiments, the results show that the prediction model based on MF-BOA-SVR demonstrates better performance in terms of expressway travel time prediction compared to benchmark models such as back propagation algorithm (BP) and random forest (RF), and exhibits strong generalizability, on the dataset of the section from Yuchong toll station to Lanzhou East toll station, the mean absolute error is reduced by 54.80%, root mean square error by 56.11% and mean absolute percentage error by 53.94% on average.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-31
  • 最后修改日期:2024-09-10
  • 录用日期:2025-02-17
文章二维码