基于非线性深度子空间学习的微表情识别方法研究
作者单位:

1.星河智联汽车科技有限公司;2.广汽丰田汽车有限公司;3.天津师范大学;4.广州城市理工学院

中图分类号:

TP391? ????? ?????

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Research on Micro-Expression Recognition Based on Nonlinear Deep Subspace Learning
Author:
Affiliation:

1.SYNCORE AUTOTECH Co.,Ltd.;2.GAC Toyota Motor Co.,Ltd.;3.Tianjin Normal University;4.Guangzhou City University of Technology

Fund Project:

The National Natural Science Foundation of China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    针对微表情识别中深度子空间网络鲁棒性差和泛化能力弱的问题,提出了一种基于非线性深度子空间学习和光流计算的微表情识别方法。该方法通过引入核变换来充分挖掘微表情中的情感信息,同时使用光流特征来捕捉微表情的运动信息,从而提高识别的鲁棒性。在SMIC、SAMM、CASME和CASME Ⅱ 4个广泛使用的自发微表情数据集和3DB-combined复合数据集上的实验表明,所提方法识别性能优于MACNN、Micro-Attention等深度学习方法,其中在复合数据集上的准确率达到0.8346。此外,在SMIC数据集上添加10%、20%、30%和40%的随机噪声块后,在不同噪声水平下的未加权F1分数均优于其他算法,验证了该方法在微表情识别任务中的有效性和鲁棒性。

    Abstract:

    To address the issues of poor robustness and weak generalisation capabilities in deep subspace network-based micro-expression recognition, this paper proposes a novel micro-expression recognition method based on non-linear deep subspace learning and optical flow computation. The method introduces kernel transformation to comprehensively extract emotional information from micro-expressions, whilst simultaneously employing optical flow features to capture the motion dynamics of micro-expressions, thereby enhancing recognition robustness. The experiments were conducted on four widely used spontaneous micro-expression datasets, i.e., SMIC, SAMM, CASME and CASME Ⅱ, as well as the 3DB-combined composite dataset. The results indicate that the proposed method outperforms deep learning approaches such as MACNN and Micro-Attention in terms of recognition performance, achieving an accuracy of 0.8346 on the composite dataset. Furthermore, after adding random noise blocks at levels of 10%, 20%, 30%, and 40% to the SMIC, the unweighted F1 scores at various noise levels consistently surpassed those of other algorithms, thereby validating the effectiveness and robustness of the proposed method in the micro-expression recognition task.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-19
  • 最后修改日期:2024-12-12
  • 录用日期:2025-02-17
文章二维码