SDN多控制器交换机迁移负载均衡机制
DOI:
CSTR:
作者:
作者单位:

东北石油大学 a.计算机与信息技术学院

作者简介:

通讯作者:

中图分类号:

TP393???????

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目),


Load Balancing Mechanism for SDN Multi-Controller Switch Migration
Author:
Affiliation:

1.a. School of Computer and Information Technology Center;2.Northeast Petroleum University,Daqing 163318;3.P. R. China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对大型数据中心复杂的软件定义网络(SDN)架构中多控制器结构引发的负载不均衡问题,提出了一种基于强化学习的交换机迁移策略。首先,综合考虑负载均衡度与控制器负载分布,将交换机迁移问题建模为组合优化问题。其次,结合基于SumTree的优先迁移机制对SAC算法进行优化,以最大化负载均衡度的改善,同时采取较小迁移开销的策略。借助Server建立全局控制器的控制平面连接,以根据负载状态实施交换机迁移,最终实现控制器的负载均衡。仿真结果表明,该策略有效地依据负载状态实现了负载均衡。在简单负载环境中负载均衡度提升了17.34%;在复杂负载环境中,性能提升更为显著,达到74.45%,同时在迁移开销方面也表现出一定优势。

    Abstract:

    In response to the issue of load imbalance caused by the multi-controller architecture in complex Software Defined Network (SDN) structures within large data centers, a switch migration strategy based on reinforcement learning is proposed. First, the switch migration problem is modeled as a combinatorial optimization problem, taking into account both load balancing and the distribution of controller loads. Next, we optimize the Soft Actor-Critic (SAC) algorithm by incorporating a priority migration mechanism based on a SumTree, aiming to maximize improvements in load balancing while employing a strategy that incurs minimal migration overhead. A global control plane connection is established through a server to facilitate switch migration based on load conditions, ultimately achieving load balancing among controllers. Simulation results indicate that this strategy effectively realizes load balance according to load states. In a simple load environment, load balancing improved by 17.34%; in a complex load environment, the performance enhancement was even more significant, reaching 74.45%, while also demonstrating certain advantages in terms of migration overhead.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-21
  • 最后修改日期:2024-10-16
  • 录用日期:2024-11-11
  • 在线发布日期:
  • 出版日期:
文章二维码