航天器控制力矩陀螺温度场计算与分析
作者单位:

四川大学

中图分类号:

TH133.7

基金项目:

装备预研教育部联合(8091B032209)、四川省重点研发项目(2023YFG0258)、机器人卫星实验室开放基金


Calculation and Analysis of Temperature Field of Control Moment Gyroscope for Spacecraft
Affiliation:

Sichuan University

Fund Project:

Supported by Joint Fund of Equipment Pre-research and Ministry of Education (8091B032209), Sichuan Science and Technology Program (No. 2023YFG0258) and Opening Project of Robotic Satellite Laboratory.

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    控制力矩陀螺是航天器在太空调整姿态的执行部件,其仅依靠热传导和热辐射向真空中传递热量,易出现高温升,影响其稳定性和可靠性。因此研究控制力矩陀螺的温度场,判断其运行温度是否满足要求至关重要。本文以70Nms单框架控制力矩陀螺为对象,建立控制力矩陀螺温度场仿真模型并研究转速、转矩、轴承预紧力对温度场的影响。与实验结果对比,本文仿真模型测点温度平均准确度达93.87%。研究发现,各测点温度变化均对转速比较敏感,转子轴下端测点对转矩最为敏感,上下端两测点对预紧力最为敏感,转子轴下端测点温升最大且为5.2℃,框架测点温升最小且为1.72℃。本文提出的控制力矩陀螺温度场计算方法,可为航天器控制力矩陀螺优化设计和运行诊断提供技术指导。

    Abstract:

    The control moment gyroscope constitutes a pivotal actuator in spacecraft attitude control systems. It dissipates heat primarily through thermal conduction and radiation into the vacuum of space, which causes substantial temperature increases that potentially compromise its stability and reliability. Consequently, analyzing the temperature field of the control moment gyroscope and ensuring its operating temperature remains within permissible limits are imperative. This research focuses on a 70 Nms single-frame control moment gyroscope. A simulation model is developed to investigate its temperature distribution and explore the influence of rotational speed, torque, and bearing preload on thermal characteristics. Upon validation against experimental data, the simulation model demonstrates an average temperature prediction accuracy of 93.87%. The outcomes reveal that temperature variations across various measurement points are sensitive to rotational speed. Notably, the lower extremity of the rotor shaft exhibits a pronounced responsiveness to torque inputs. Furthermore, both the upper and lower ends of the rotor shaft are significantly influenced by bearing preload. In particular, the maximum temperature increase of 5.2°C is observed at the lower end of the rotor shaft, while the frame experiences the least elevation of 1.72°C. The temperature field modeling approach presented herein offers valuable insights for optimizing the design of control moment gyroscopes and facilitating operational diagnostics of spacecraft systems.

    参考文献
    [1] 虎刚,徐映霞,吴金涛.200Nms单框架控制力矩陀螺的热平衡试验[J].空间控制技术与应用,2008,(01):25-28.Hu G, Xu Y X, Wu J T. Thermal balance test on a 200Nms single-gimbal CMG[J]. Aerospace Control and Application, 2008,(01):25-28.(in Chinese)
    [2] 丰茂龙,李刚,雷鸣,等.空间站核心舱舱外大型控制力矩陀螺热控设计与验证[J].航天器工程,2023,32(06):60-67.Feng M L, Li G, Lei M, et al. Thermal Control Design and Verification for Large-scale Control Moment Gyroscope Outside Core Module of Space Station[J]. Spacecraft Engineering, 2023,32(06):60-67. (in Chinese)
    [3] 卢威,满广龙,姜军,等.交会对接目标飞行器控制力矩陀螺的传热特性[J].航天器工程,2012,21(04):42-46.Lu W, Man G L, Jiang J, et al. Heat Transfer Characteristics of Control Moment Gyro for Target Spacecraft of Rendezvous and Docking[J]. Spacecraft Engineering, 2012,21(04):42-46. (in Chinese)
    [4] Lebedev E L, Repin A O. Influence of Kinematic Layout of Control Moment Gyros with Ball-Bearing Supported Rotors on the Dynamics of Heating Their Elements in Vacuum[J]. Gyroscopy and Navigation, 2023, 14(2): 176-181.
    [5] Tian X, Li G, Jiang J, et al. Analysis and research on thermal-structure coupling of Control Moment Gyro frame rotor assembly[C]//2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2023: 1066-1070.
    [6] 王伟,畅建伟,叶郭波,等.大型磁悬浮控制力矩陀螺热分析与实验[J].安徽师范大学学报(自然科学版),2018,41(03):234-237+245.Wang W, Chang J W, Ye G B, et al. Thermal Analysis and Experiment of Large-Sized Magnetic Suspended Control Moment Gyroscope[J]. Journal of Anhui Normal University (Natural Science), 2018,41(03):234-237+245. (in Chinese)
    [7] Han W, Liu G, Sun J, et al. Thermal-structure coupling analysis and research of MSCMG[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2): 391-399.
    [8] 韩邦成,彭松,贺赞,等.磁悬浮控制力矩陀螺高速电机绕组涡流损耗计算及热分析[J].光学精密工程,2020,28(01):130-140.Han B C, Peng S, He Z, et al. Eddy current loss calculation and thermal analysis of high-speed motor winding in magnetically suspended control moment gyroscope[J]. Optics and Precision Engineering, 2020, 28(01):130-140. (in Chinese)
    [9] Song Wonsik, Lee Sang Min, Kim Gyeong Min, et al. Analysis of Thermal Stability of Control Moment Gyroscope in Satellite[J]. Transactions of the Korean Society of Mechanical Engineers B, 2024, 48(6): 353-360.
    [10] Liu S, Huang S, Lu L, et al. Thermal vacuum and swivel table tests of a CMG and fault mechanism analysis[J]. Journal of Aerospace Engineering, 2018, 31(5): 04018069.
    [11] Zhai L, Han B, Liu X, et al. Losses estimation, thermal-structure coupled simulation analysis of a magnetic-bearing reaction wheel[J]. International Journal of Applied Electromagnetics and Mechanics, 2019, 60(1): 33-53. (in Chinese)
    [12] 谢皖滇,李国丽,孙泽辉,等.基于热磁耦合的永磁同步电机温升预测[J].传感器与微系统,2023,42(05):130-134.Xie W D, Li G L, Sun Z H, et al. Temperature rise prediction for PMSM based on thermomagnetic coupling[J]. Transducer and Microsystem Technologies, 2023,42(05):130-134. (in Chinese)
    [13] Inampudi R, Gordeuk J. Simulation of an electromechanical spin motor system of a control moment gyroscope[C]//AIAA Guidance, Navigation, and Control Conference. 2016: 0091.
    [14] 安佳琦,张义民,李铁军.角接触球轴承热特性研究[J].沈阳化工大学学报,2021,35(02):170-174.An J Q, Zhang Y M, Li T J. Research on Thermal Characteristics of Angular Contact Ball Bearings[J]. Journal of Shenyang University of Chemical Technology, 2021,35(02):170-174. (in Chinese)
    [15] 高琛,许涛,陈玉立,等.基于ANSYS Workbench的角接触球轴承摩擦热仿真研究[J].轻工机械,2023,41(03):35-40+48.Gao C, Xu T, Chen Y L, et al. Friction Thermal Simulation of Angular Contact BallBearing Based on ANSYS Workbench. Light Industry Machinery, 2023,41(03):35-40+48.(in Chinese)
    [16] 袁真铖,夏加宽.基于集总热网络法永磁同步电机温度场分析[J].船电技术,2023,43(02):55-59.Yuan Z C, Xia J K. Temperature field analysis of permanent magnet synchronous motor based on lumped thermal network method[J]. Marine Electric & Electronic Engineering, 2023,43(02):55-59. (in Chinese)
    [17] Ying P A N, Wen-jun G A O, Kun L I, et al. Thermal analysis of main shaft roller bearing for aero-engine by finite element based thermal network method[J]. Journal of Propulsion Technology, 2021, 42(1): 149.
    [18] He Z, Wen T, Zhang X, et al. Multi-physics coupling and thermal network analysis of mscmg[C]//2022 China Automation Congress (CAC). IEEE, 2022: 4544-4548.
    [19] 杨浩亮,张振强,闫伟.高速精密角接触球轴承的热分析与验证[J].轴承,2015,(04):12-16.Yang H L, Zhang Z Q. Yan W. Thermal Analysis and Verification for High Speed Precision Angular Contact Ball Bearings[J]. Bearing, 2015,(04):12-16. (in Chinese)
    [20] Takeuchi Y, Davis S, Eby M, et al. Bearing Thermal Conductance Measurement Test Method and Experimental Design[M]//Rolling Element Bearings. ASTM International, 2012.
    [21] 段宇琛,薛玉君,李济顺,等.角接触球轴承极限转速试验及温升预测方法[J].轴承,2022,(12):45-49.Duan Y C, Xue Y J, Li J S, et al. Limit Speed Test and Temperature Rise Prediction Method for Angular Contact Ball Bearings[J]. Bearing, 2022,(12):45-49. (in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:87
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-08-26
  • 最后修改日期:2024-09-05
  • 录用日期:2024-10-08
文章二维码